

engineers | scientists | innovators

GEOTECHNICAL FACTUAL REPORT

Collinsville – Pittsburg 230 kV

Offshore Investigation

Prepared for

LS Power Grid California, LLC 16150 Main Circle Drive, Suit 310 Chesterfield. MO 63017

Prepared by

Geosyntec Consultants, Inc. 1111 Broadway, 6th Floor Oakland, California 94607

Project Number: WG3444

Date: 10/30/2024

Geotechnical Factual Report

Collinsville – Pittsburg 230 kV

Offshore Investigation

Prepared for

LS Power Grid California, LLC 16150 Main Circle Drive, Suit 310 Chesterfield, MO 63017

Prepared by

Geosyntec Consultants, Inc. 1111 Broadway, 6th Floor Oakland, CA 94607

Christopher Hunt, PhD, PE, GE Senior Principal

David Umberg, PE, GE Senior Geotechnical Engineer

Project Number: WG3444 Date: 10/30/2024

TABLE OF CONTENTS

1.		RODUCTION1
	1.1	Purpose and Scope1
	1.2	Report Organization1
2.	GEC	LOGIC AND SEISMIC SETTING
	2.1	Surficial Geology
	2.2	Seismic Setting
3.		D INVESTIGATION PROGRAM
	3.1	Introduction
	3.2	Preparation
	3.3	Permits4
	3.4	Offshore Drilling
	3.5	Drilling and Logging
	3.6	Sampling Techniques
		3.6.1 Shelby Tube Sampling
		3.6.2 Modified California Sampling
		3.6.3 Standard Penetration Test Sampling
	3.7	Blow Counts
4.	LAB	ORATORY TESTING PROGRAM7
5.	SUB	SURFACE CONDITIONS
	5.1	Soil Stratigraphy
		5.1.1 Unit 1: Poorly Graded Sand with Silt
		5.1.2 Unit 2: Sandy Lean Clay/Silt to Silty Sand
		5.1.3 Unit 3: High Plasticity Clay and Silt with Organics
		5.1.4 Unit 4: Lean Clay/Inelastic Silt
		5.1.5 Unit 5: Poorly Graded Gravel with Sand
		5.1.6 Unit 6: Lean Clayey Gravel with Sand
	5.2	Cross Section
6.	LIM	ITATIONS10
7.	REF	ERENCES11

LIST OF TABLES

- Table 1:Offshore Investigation Summary
- Table 2:
 Geotechnical Laboratory Test Results Summary

LIST OF FIGURES

- Figure 1: Site Location Map
- Figure 2: Site Layout Map
- Figure 3: Surface Geology
- Figure 4: Liquefaction Susceptibility
- Figure 5: Location of Faults in the Vicinity of the Site
- Figure 6: Cross Section A-A' Along Cable 3

LIST OF APPENDICES

- Appendix A: Boring Logs
- Appendix B: Laboratory Testing Results
- Appendix C: Photo Log

ACRONYMS AND ABBREVIATIONS

ASTM	ASTM International
B&V	Black & Veatch
CGS	California Geologic Survey
СН	fat clay
CL	lean clay
Cooper	Cooper Testing Laboratory
DS-CD	consolidated drained direct shear test
DS-CU	consolidated undrained direct shear test
GC	clayey gravel
Geosyntec	Geosyntec Consultants, Inc.
GP	poorly graded gravel
GPS	global positioning system
Gregg	Gregg Drilling, Inc
LS Power	LS Power Grid California, LLC
MH	elastic silt
ML	silt
Mod-Cal	Modified California sampler
Ν	SPT blows per foot
N60	SPT blows per foot normalized to 60% energy ratio
NSHM	National Seismic Hazard Model
NWP	Department of the Army Nationwide Permit
Project	offshore portion of the Pittsburg-Collinsville 230 kV transmission line
Sealaska	Sealaska, Inc.
SM	silty sand
SP	poorly graded sand
SP-SM	poorly graded sand with silt
SPT	Standard Penetration Test
THA	Task Hazard Assessment
TX-UU	unconsolidated undrained triaxial test
USCS	Unified Soil Classification System

USGS United States Geological Survey

1. INTRODUCTION

1.1 Purpose and Scope

LS Power Grid California, LLC (LS Power) is developing a series of six submarine cables which will cross the Sacramento River to connect the new Collinsville substation to the existing Pittsburg substation, as part of the Collinsville-Pittsburg 230 kV transmission line project (Figure 1). To support the design of the project, LS Power commissioned Gregg Drilling, LLC (Gregg), a subsidiary of Sealaska, Inc. (Sealaska), to perform an offshore investigation on the Sacramento/San Joaquin River.

The investigation comprised a total of 12 geotechnical borings along the cable alignment, with 9 shallow borings, each approximately 20 feet deep below the mudline, and 3 deeper borings to depths of approximately 40, 80 and 100 feet below the mudline. The cable alignment and boring locations are shown on Figure 2. The investigation also included collection of soil samples for geotechnical, environmental, and soil thermal testing. Gregg retained Geosyntec Consultants, Inc. (Geosyntec) to provide geotechnical support during the offshore investigation by logging the soil borings, collecting geotechnical soil samples, coordinating geotechnical laboratory testing, and preparing this geotechnical factual report.

This report includes the data collected during the geotechnical investigation, provides a summary of the geotechnical laboratory testing, and presents the findings of the geotechnical investigation. This report is intended to provide data for support of the design of the offshore transmission line (by others) but does not include interpretation of the data. The environmental soil sampling and testing was also performed by Geosyntec, and the results will be presented as part of a separate report. In-situ and laboratory soil thermal testing was performed by Geotherm USA under a separate subcontract with Gregg; discussion of the soil thermal results is outside the scope of this report.

1.2 Report Organization

The remainder of this geotechnical factual report has been organized into the following sections:

- Section 2 describes the geologic and seismic setting;
- Section 3 describes the offshore geotechnical investigation field program;
- Section 4 provides details on the geotechnical laboratory testing;
- Section 5 describes the subsurface conditions that were encountered;
- Section 6 provides limitations relating to the use of this report; and
- Section 7 lists the references used to prepare this report.

Boring logs are included as Appendix A. Geotechnical laboratory test results are included as Appendix B. A photo log is provided as Appendix C.

2. GEOLOGIC AND SEISMIC SETTING

2.1 Surficial Geology

The offshore cable installation will be located in the Sacramento River, downstream of the confluence of the Sacramento and San Joaquin Rivers, and near the Sacramento River's outlet at Suisun Bay (Figure 1).

Based on published geologic mapping (Graymer et al. 2002, Sims et al. 1973), the surficial geology at the northern shore consists of Bay Mud and Delta mud deposited in the Holocene, described as "unconsolidated silt and clay with admixed abundant organic material; local peat, sand, and gravel lenses or discontinuous beds" (Sims et al. 1973). The surficial geology at the southern shore consists of undifferentiated artificial fill. The mapped surface geology near the site is shown in Figure 3.

According to the United States Geological Survey (USGS) (1999), up to approximately 115 million cubic meters of sediment was deposited in Suisun Bay and the surrounding area between 1867 and 1887, most of which was debris from hydraulic mining. However, after 1887, the Suisun Bay area changed to having more sediment erosion than deposition, as a result of the termination of hydraulic mining, along with implementation of flood control and water distribution projects in the Sacramento-San Joaquin watershed.

2.2 Seismic Setting

The site is located in an area with high seismic hazard. Figure 4 illustrates significant active and potentially active faults within an approximate 62-mile (100-km) radius of the Site.

Based on a review of the National Seismic Hazard Model (NSHM) fault sections database published by the USGS (2023), the nearest fault is the Pittsburg-Kirby Hills section of the Great Valley fault zone. This fault is located approximately 2.3 km to the west of the approximate middle of the cable alignment¹. The second nearest fault is the Los Medanos-Roe Island Fault, located approximately 10.0 km to the west of the site. The Clayton Fault lies approximately 12.0 km to the southeast, the Concord Fault lies approximately 17.2 km to the west, and the Midland section of the Great Valley Fault lies approximately 20.9 km to the east. The site is in close proximity to many other significant faults, including the Mount Diablo Fault, Greenville Fault, Green Valley Fault, Calaveras Fault, and Hayward Fault².

Numerous sizeable earthquakes have been recorded in the Bay Area, the most recent of which has been the South Napa Earthquake on August 24, 2014, with a moment magnitude (Mw) of 6.0. The epicenter of the South Napa Earthquake was approximately 42 km northwest of the site.

¹ The middle of cable alignment is assumed to be located at approximately 38.0556 N latitude, 121.8698 W longitude.

² All distances provided are relative to the midpoint of the cable alignment. The distance between faults and the submarine cables vary based on location, and some project features may be subject to more intense shaking than others based on their locations.

Another recent earthquake within 50 km of the site is the Mw 5.8 Livermore Earthquake on January 24, 1980.

The northern shore is located in an area that was mapped by USGS as having high susceptibility to liquefaction, while the southern shore was mapped as having very high susceptibility to liquefaction (USGS 2006) (Figure 5). The liquefaction hazard offshore within the Sacramento River channel has not been mapped.

3. FIELD INVESTIGATION PROGRAM

3.1 Introduction

Gregg and Geosyntec performed an offshore field investigation to evaluate the subsurface soil conditions along the 230 kV cable alignment. The investigation consists of drilling twelve borings and collecting soil samples for laboratory testing. The offshore exploration program was developed after reviewing/considering the following:

- Available geological maps.
- Review of the specifications provided for the offshore investigation (Black & Veatch [B&V] 2023). B&V (2023) also specified the location and termination depths of each boring.
- A pre-investigation coordination meeting on 26 June 2024 with LS Power, Gregg, Geosyntec, and Geotherm USA.
- A bathymetric survey of the project area performed between 18 September and 25 October by eTrac Inc.
- Boring access at the time of the investigation, based on weather/wave conditions, ship traffic, and vessel anchoring capabilities.

The depth of the borings ranged between 20 feet and 100 feet below the mud line. During the investigation, Gregg recorded the locations of the borings using the global positioning system (GPS) aboard the drilling vessel. Figure 2 shows the proposed cable alignment, shaded bathymetry, and completed boring locations. Table 1 provides a summary of the boring depths and coordinates.

3.2 Preparation

Prior to drilling, Gregg, Geosyntec, and LS Power reviewed the following with the exploration team:

- Field exploration goals, objectives, and scope;
- Sampling procedure and requirements for laboratory testing;
- Boring logging protocol and sample storage; and
- Gregg's health and safety requirements while performing the investigation.

Field operations were summarized in a daily progress email to the project team.

In addition, Geosyntec prepared a site-specific Task Hazard Assessment (THA) for Geosyntec personnel to address potential hazards associated with the proposed offshore investigation. Once on site, field personnel participated in daily site safety tailgate meetings with Gregg's vessel captain prior to drilling.

3.3 Permits

Prior to the investigation, LS Power procured the following permits and authorizations for the work:

- California State Water Resources Control Board. Amended Notice of Applicability for Enrollment Under State Water Board General Order for the Corps' Nationwide Permits (Order No. WQ 2021-0048-DWQ. Effective 25 April 2024.
- State of California, California State Lands Commission, Survey Permit, General Permit to Conduct Geological Surveys. Form A4545. Executed 10 June 2024.
- Department of the Army. *Subject: File Number SPN-2022-00157*. Correspondence in reference to authorization under Department of the Army Nationwide Permit (NWP) 6. Dated 12 June 2024 and 5 July 2024.
- License Agreement Between the City of Pittsburg and LS Power Grid California, LLC, to Use the City's Granted Sovereign Tidelands. Executed 18 June 2024.

A copy of the permits and approvals were kept on board the vessel during the investigation.

3.4 Offshore Drilling

The offshore investigation was performed from 22 July 2024 to 2 August 2024. Gregg used their purpose built R/V Quin Delta drilling ship with Mobile B-80 drill rig mounted to the vessel. The R/V Quin remained stationed offshore during the investigation, and Gregg used a skiff to provide shore support and to transport Geosyntec, Geotherm USA, and Gregg's drilling staff to and from the Pittsburg Marina on each day of drilling. In shallower water (up to approximately 55 ft deep), two hydrostatically controlled spuds were used to hold the vessel in position during drilling. In deeper water, the vessel was anchored using a 4-point anchor system.

During drilling, a 7-inch outer diameter conductor casing was used through the water column and extending to a depth of approximately 1 to 5 feet below the mudline, to help protect the drill string. The boring was then completed using a 5-inch diameter drill bit attached to NWJ drill rods and advanced with the rotary drilling technique. River water was typically used as the drilling fluid, although drilling mud was occasionally used where needed to prevent caving of the borehole.

As the project location is tidally influenced, the depth between the water surface and mudline was typically measured at both the beginning and end of drilling at each boring. The water depth

was measured using a depth sounding from the R/V Quin, and corroborated by measuring the length of drill string required to reach the mudline.³

3.5 Drilling and Logging

Geosyntec field staff completed a boring log for each boring drilled. The boring log was created based on visual-manual observations of soil samples collected from each boring, in accordance with ASTM International (ASTM) D2488. The completed boring log was reviewed by the Geosyntec project manager. Once laboratory test results were received, the data was reviewed and logs were updated where appropriate. Where discrepancies between field logging and laboratory test data occurred, the field staff and project manager reviewed the log and, if necessary, re-evaluated the samples to finalize the boring log. The completed boring logs are included in Appendix A.

3.6 Sampling Techniques

Three types of soil samplers were used during the offshore field investigation program: Modified California samplers (Mod-Cal), thin-walled Shelby tubes, and Standard Penetration Test (SPT) samplers. The sampling methods are summarized below:

- A fixed-head, thin-walled Shelby tube sampler was hydraulically pushed to obtain "relatively undisturbed" samples from subsurface fine-grained soils.
- Mod-Cal samplers were used in all material types to obtain sufficient material for both geotechnical and geothermal laboratory testing (by Geotherm USA). Samples collected using this method were considered "disturbed."
- SPT samplers were generally used in granular soil types. Samples obtained by this method were considered "disturbed."

Samples were identified using "B#-S#", where B# represents the boring number and S# represents the sample number within that boring (e.g., 3-2 represents the second sample collected in Boring 3). The locations and names of samples are noted on the boring logs.

3.6.1 Shelby Tube Sampling

Thin-walled Shelby tube samplers were pushed where soft silt and clay materials were encountered. The tubes were 3 feet long with an outer diameter of 3 inches. The driller advanced the samplers approximately 30 inches by continuous pushing to limit sample disturbance. The maximum hydraulic pressure was recorded over the sample interval. Samples were capped and sealed for storage and transportation. Samples were stored and transported vertically to minimize disturbance.

3.6.2 Modified California Sampling

The Mod-Cal sampler is 3-inch outside diameter and 2.5-inch inner diameter and was used to obtain samples across all soil types encountered during the project. Six-inch long brass liners

³ The boring logs have not been corrected for changes in water depth that may have occurred between the start and end of drilling at each boring.

were used within the Mod-Cal sampler to collect samples for index testing. The Mod-Cal samplers were advanced to a depth of 24 inches using a 140-pound automatic trip hammer falling through a vertical height of 30 inches. The number of blows required for each 6-inch penetration was recorded on the boring logs. Where clean sand was encountered, a sand catcher was used to improve sample recovery. The brass liners were then individually capped and labeled with postscripts A, B, C, and D, corresponding to the first 6-inches, the second 6-inches, etc., of each Mod-Cal sample interval. The end caps were taped to reduce moisture loss.

In general, Mod-Cal samples were collected at a similar depth as the in-situ geothermal tests performed by Geotherm USA. At the designated depths listed in the offshore investigation specification (B&V 2023), Geotherm USA coordinated with Geosyntec to collect one of the Mod-Cal liners for laboratory geothermal testing, for comparison with the in-situ geothermal testing performed at a similar depth.

3.6.3 Standard Penetration Test Sampling

An SPT sampler with a 2-inch outside diameter and a 1.375-inch inside diameter was used for sample collection in accordance with ASTM D1586. The SPT samplers were advanced 18 inches into the soil by using a 140-pound automatic trip hammer falling through a vertical height of 30 inches. The number of blows required for each 6-inch penetration was recorded on the boring logs. Where clean sand was encountered, a sand catcher was used to improve sample recovery.

3.7 Blow Counts

During SPT sampling, the sum of the number of hammer blows required for the second and third 6 inches of penetration (i.e., between 6 and 18 inches) is known as an SPT N value. These N values are recorded on the boring logs.

The SPT N values are frequently used for correlations with other engineering properties. However, the blow count values are sensitive to the energy of each specific SPT hammer used. Therefore, the SPT blow counts are typically normalized to a standard 60% efficiency which is represented by N60.

Gregg provided the results of the previous energy calibration performed on the automatic hammer used with the Mobile B-80 rig on the R/V Quin. Although the previous energy measurement was performed for a different project, these energy measurements are considered relevant, as we understand that the same automatic hammer and Mobile B-80 drill rig were used on both projects. The previous energy measurement was performed on 11 September 2023. Hammer calibrations were conducted in accordance with ASTM D4633 using dynamic measurements on a mixture of SPT and Mod-Cal samplers collected at 5, 10, 15, 20, and 25 feet below ground surface. The average energy transfer ratio measured during this previous calibration ranged between 83% and 101%, with an average of 92%. The average measured energy transfer ratio was used to estimate the N60 values which are reported on the boring logs.

4. LABORATORY TESTING PROGRAM

Samples obtained during the exploration program were reviewed and selected soil samples were sent to Cooper Testing Laboratory (Cooper) of Palo Alto, California for evaluation of geotechnical properties, including density, Atterberg limits, gradation, and strength. Test samples and test methods were selected based on requirements listed on the offshore investigation specifications (B&V 2023), review of the subsurface conditions, and to provide a representative selection of the materials encountered. A draft test request sheet was prepared and distributed to Gregg and LS Power prior to submitting the samples for geotechnical testing.

The following geotechnical laboratory tests have been performed on samples collected during the field investigations:

- Moisture Content/Dry Density (ASTM D7263b)
- Atterberg Limits via the wet prep method (ASTM D4318)
- Grain Size Distribution (ASTM D6913)
- Sieve Analysis with Hydrometer (ASTM D7928)
- Fines Content via #200 wash (ASTM D1140)
- Organics Content (ASTM D2974)
- Unconsolidated Undrained Triaxial Tests (TX-UU) (ASTM D2850)⁴
- Consolidated Drained Direct Shear Tests (DS-CD) (ASTM D3080)
- Consolidated Undrained Direct Shear Tests (DS-CU) (ASTM D3080 Modified)⁵

The TX-UU, DS-CD, and DS-CU tests were performed on relatively undisturbed Shelby tube samples of fine-grained soil. The DS-CD and DS-CU tests were performed at three confining pressures to develop effective and total stress strength parameters, respectively.

The results of the geotechnical laboratory tests are presented in Appendix B. Table 2 provides a summary of the laboratory results.⁶

⁴ The offshore investigation specifications (B&V 2023) notes that unconfined compression tests should be performed on soil samples per ASTM D2166. However, given that soil samples were typically saturated, following discussion with LS Power, we performed TX-UU tests instead per ASTM D2850 to provide a better representation of in-situ undrained strength conditions, TX-UU tests were performed at confining pressures similar to the in-situ confining stress.

⁵ The offshore investigation specifications (B&V 2023) notes that undrained direct shear tests should be performed via ASTM D6528, however, the cited ASTM test method is for consolidated undrained direct *simple* shear, not direct shear. We understand that the strength properties are intended to be used to evaluate horizontal shearing of soil during the cable installation (via hydroplowing), and have therefore recommended DS-CU strength testing via a modified version of ASTM D3080, following discussion with LS Power.

⁶ We recommend that the design engineers review the raw laboratory test results and consider whether different interpretations of strength may be more appropriate than the single values presented in Table 2. For example, a strength corresponding to a different strain may be more appropriate in some cases.

5. SUBSURFACE CONDITIONS

5.1 Soil Stratigraphy

The subsurface soil conditions were evaluated based on field observation and soil samples collected during the investigation. Unified Soil Classification System (USCS) designations are provided in accordance with ASTM D2487 for samples that have been subjected to laboratory testing. These USCS designations are provided below and listed in the boring logs included as Appendix A.

A photo log of the field investigation, including representative photos from the investigation, is included in Appendix C. The subsurface soils can be idealized and categorized into the following soil units⁷:

5.1.1 Unit 1: Poorly Graded Sand with Silt

This soil unit consists of primarily poorly graded sand, ranging from clean sand (USCS: SP) to sand with silt (up to 15% silt) and trace gravel (SP-SM). Where this unit occurs at shallow depth (e.g., in B1 and B6), the soil can be very loose to loose, with N60 values of as low as 0 blows per foot, meaning the sampler was advanced using only the weight of the hammer. Where this unit was encountered elsewhere along the alignment, it was found to be medium dense to very dense.

5.1.2 Unit 2: Sandy Lean Clay/Silt to Silty Sand

This soil unit consists of sandy silt to silty sand (USCS: SM to ML), along with some sandy lean clay (CL). This soil unit is characterized as having a significant fraction of both low-plasticity fines and sand, ranging from approximately 20% to 85% sand by weight. In some areas, this unit was also observed to have trace organics. Atterberg limits tests in this unit indicates that the fine-grained material in this unit is non-plastic to low plasticity. Based on blow counts in this unit, the silty sand is typically characterized as medium dense to dense, while the sandy silt is typically characterized as stiff to hard. The silty sand and sandy silt was grouped together in this unit as both material types are expected to exhibit similar behavior type, dominated by the low-plasticity silty matrix.

5.1.3 Unit 3: High Plasticity Clay and Silt with Organics

This soil unit consists of high plasticity fat clay and elastic silt with organics (USCS: CH and MH). The stiffness of this material ranges from very soft to soft. Atterberg limits tests in this unit indicate that the soil has high plasticity, with a plasticity index of up to 61 (at a depth of 12-14.5 feet in B11). The soil in this unit can have up to 38% of sand by volume and up to 18% of organic material.

5.1.4 Unit 4: Lean Clay/Inelastic Silt

This soil unit consists of clay or silt with plasticity ranging from non-plastic to medium plasticity. The soil in this unit can have up to 20% of sand by volume. The stiffness of the soil

⁷ Note that the term unit is used here as a convenience to refer to soils with similar descriptions and does not necessarily indicate that the soils are in the same stratigraphic unit.

can range from stiff to very hard. This soil unit often exists as a thin lens between other soil units. The soil in this unit can be classified as CL (lean clay) and ML (silt) by USCS.

5.1.5 Unit 5: Poorly Graded Gravel with Sand

This soil unit consists of primarily poorly graded gravel. This soil unit often has sand mixed in the gravel matrix, along with trace silt and clay. This soil unit exists mainly at deeper depths and is typically very dense. The soil in this unit can be classified as GP (poorly graded gravel) by USCS.

5.1.6 Unit 6: Lean Clayey Gravel with Sand

This soil unit was only encountered between a depth of approximately 85 and 95 feet below the mudline in B11, and consists of clayey gravel (USCS: GC). Sieve analysis on this soil indicates approximately 47% low to medium plasticity clay, 30% gravel, and 23% poorly graded sand. This soil unit was observed to be very dense.

5.2 Cross Section

A cross section of the bathymetry along the Cable 3 alignment is provided as Figure 6. This cross section also shows the approximate subsurface conditions along the alignment by projecting each boring onto the proposed cable alignment and showing an idealized soil profile at each soil boring using the unit descriptions presented above. Due to the large spacing between borings, the subsurface stratigraphy was not interpolated between borings. We anticipate that due to complex alluvial deposition of sediments in the Sacramento River, including potential for repeated changes in the alignment of the river, changes in the river sediment load, and changes in volume and erosive capacity of river flows over time, which would in turn result in changes in the locations and types of sediment during the river's depositional history, there is significant potential for variability between borings.

9

6. LIMITATIONS

This report has been prepared for the sole use of Gregg and LS Power to support the design of the offshore Collinsville-Pittsburg 230 kV transmission project in the Sacramento River, California. Use by any other party is at their own discretion and risk. The data and observations presented in this report have been formulated in accordance with accepted geotechnical engineering practices in Northern California at the time this report was prepared. No warranty, expressed or implied, is made or should be inferred.

Conclusions in this memorandum are based upon our review of the soil conditions encountered during the geotechnical site investigation in July and August 2024. Subsurface conditions described in this report are based on subsurface soil conditions at limited exploration locations. Variations in subsurface conditions may exist between exploration locations, and the project team may not be able to identify all adverse conditions along the cable alignment.

Data presented in this report are time-sensitive in that they apply only to locations and conditions existing at the time of the exploration and preparation of this report. Data should not be applied to any other projects in or near the area of this study, nor should they be applied at a future time without appropriate verification.

7. REFERENCES

- Black & Veatch. 2023. Collinsville-Pittsburg 230 kV Transmission Line, Underwater Geotechnical Sampling Services, Technical Specifications. 1 August.
- Bryant, W.A., compiler. 2017. Fault number 246, Rio Vista fault, in Quaternary Fault and Fold Database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults
- California Geological Survey (CGS). 2018. "Earthquake Fault Zones" Special Publication 42.
- Cappiella, K., C. Malzone, R. Smith, and B. Jaffe. 1999. Sedimentation and Bathymetry Changes in Suisun Bay: 1867-1990. USGS.
- Graymer, R. W., D.L. Jones, and E.E. Brabb. 2002. Geologic map and map database of northeastern San Francisco Bay region, California: Most of Solano County and parts of Napa, Marin, Contra Costa, San Joaquin, Sacramento, Yolo, and Sonoma Counties. U.S. Geological Survey. USGS Map MF-2403.
- Hatem, A.E., C.M. Collett, R.D. Gold, R. Briggs, S.J. Angster, N. Field, M.L. Anderson, J.Y. Ben-Horin, T. Dawson, S.B. DeLong, C.B. Duross, J.A. Jobe, E. Kleber, K.L. Knudsen, R. Koehler, D. Koning, Z. Lifton, I. Madin, J. Mauch, M. Morgan, P. Pearthree, M.D. Petersen, F. Pollitz, K.M. Scharer, P.M. Powers, B. Sherrod, M. Stickney, S. Wittke, J. Zachariasen. 2021. *Earthquake Geology Inputs for the U.S. National Seismic Hazard Model (NSHM)* 2023, version 1.0.
- Klotsko, S., J. Maloney, and J. Watt. 2023. *Shallow deformation on the Kirby Hills Fault, Sacramento-San Joaquin Delta, California (USA), Revealed from High-Resolution Seismic Refraction Data and Coring in a Fluvial System.* Geosphere, v. 19, no. 3, p. 748-769.
- Sims, J.D., K.F. Fox Jr., J.A. Bartow, and E.J. Helley, compilers. 1973. *Preliminary Geologic Map of Solano County and Parts of Napa, Contra Costa, Marin, and Yolo Counties*. USGS Map MF-484.
- U.S. Geological Survey and California Geologic Survey. 2006. *Maps of Quaternary Deposits and Liquefaction Susceptibility in the Central San Francisco Bay Region, California*. USGS Open-File Report 2006-1037, accessed September 17, 2024, at: https://earthquake.usgs.gov/education/geologicmaps/liquefaction.php.
- U.S. Geological Survey and California Geologic Survey, *NSHM Fault Sections Database* (western U.S.), version 3, December, 2023, at: https://www.sciencebase.gov/catalog/item/655bebe7d34ee4b6e05cc19f.

TABLES

Boring	Date Drilled	Termination Depth (ft) ⁽¹⁾	Elevation of Mudline (ft) ⁽²⁾	Easting ⁽³⁾	Northing ⁽³⁾	Latitude	Longitude
B01	7-31-24	21.5	-20.0	6176062.07	2214738.25	38.069732 N	121.839534 W
B02	7-29-24	22.5	-23.2	6173965.10	2213374.67	38.065905 N	121.846749 W
B03	7-29-24	21.5	-35.0	6173057.00	2212814.72	38.064332 N	121.849875 W
B04	7-26-24	21.5	-63.8	6170444.98	2212059.18	38.062154 N	121.858909 W
B05	7-25-24	21.5	-26.0	6168308.10	2210688.02	38.058303 N	121.866261 W
B06	7-25-24	21.5	-25.0	6166315.72	2208735.28	38.052861 N	121.873080 W
B07	7-24-24	21.5	-35.0	6164504.14	2207262.26	38.048743 N	121.879296 W
B08	7-31-24	21.5	-90.7	6161213.87	2206170.68	38.045612 N	121.890664 W
B09	7-22-24	81.5	-18.2	6159388.95	2204939.73	38.042157 N	121.896937 W
B10	7-23-24	42.0	-45.0	6159592.22	2205673.68	38.044181 N	121.896269 W
B11	7-30-24	101.5	-6.0	6177986.40	2215290.13	38.071323 N	121.832877 W
B12	8-2-24	21.5	-81.1	6161562.71	2206351.60	38.046123 N	121.889463 W

Table 1: Offshore Investigation Summary

1. Termination depth refers to bottom of lowest sample, in feet below the mudline.

2. Approximate elevation of mulline is based on review of bathymetric survey at the location of each borehole. The bathymetric survey was conducted from September 18, 2023 to October 25, 2023 by eTrac, Inc. Elevations are in feet, in terms of NAVD88 based on GEOID 18.

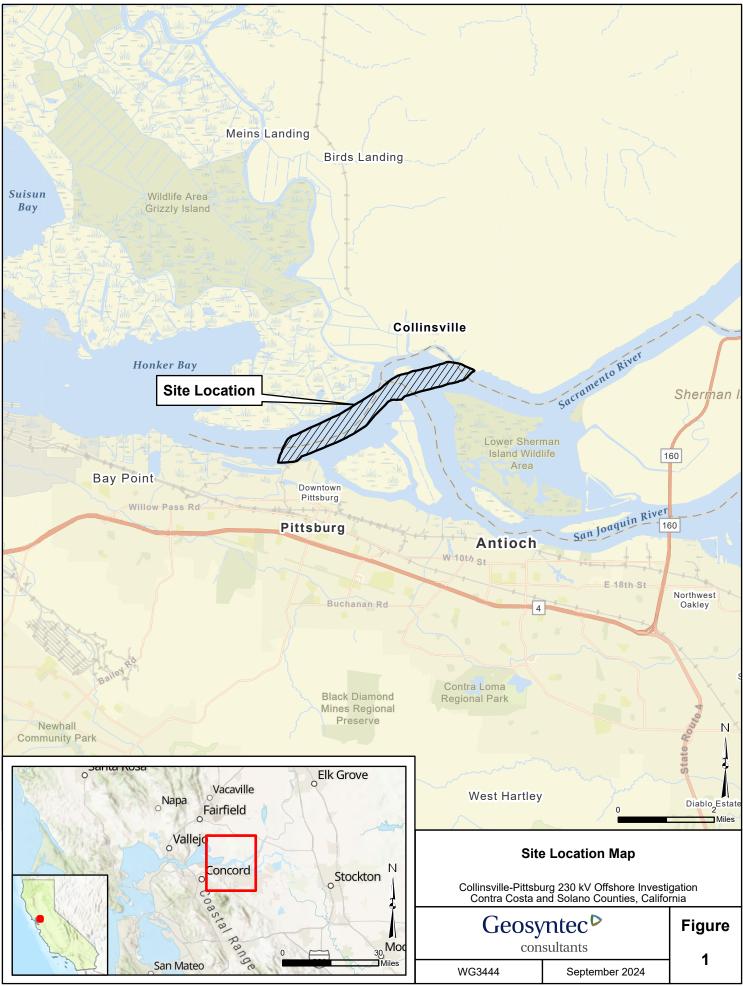
3. As-drilled boring coordinates provided by Gregg Drilling, using GPS aboard the R/V Quin. The horizontal coordinates are in terms of NAD83, California State Plane Zone 2, in US Feet.

				Moisture a	and Density	Atte	rberg L	imits		Grai	n Size Distrib	oution	TX-	UU ^[2]	DS-C	U ^[3]	DS-C	D ^[3]
Boring	Sample ID	Depth	Sampler	Moisture Content ^[1]	Wet Unit Weight	LL	PL	PI	Organic Content	% Gravel	% Sand	% Fine	Confining Pressure	Undrained Shear Stress	φ	c	φ'	c'
		(ft)		(%)	(pcf)				(%)	(%)	(%)	(%)	(psf)	(psf)	(degrees)	(psf)	degrees	(psf)
B01	1-2D	6-6.5'	Mod Cal			NV	NP	NP		0.0	91.9	8.1						
B01	1-5D	11'-11.5'	Mod Cal	25.4	126.7					0.0	91.8	8.2						
B02	2-2	2.5'-5'	Shelby	40.5	112.1	40	35	5					245	647			26.8	200
B02	2-3D	6.5'-7	Mod Cal	34.2	119.4				2.5	0.0	26.9	73.1						
B02	2 - 5B	11'-11.5'	Mod Cal	34.4	119.4					0.0	32.5	67.5						
B02	2-7	20'-22.5'	Shelby	85.6	92.2	90	53	37	7.3				994	546	13.4	400		
B03	3-2	5'-6.5'	SPT			69	34	35		0.0	27.4	72.6						
B03	3-3B-C	5.5'-6.5'	Mod Cal	55.2	106.3	52	30	22		0.0	25.7	74.3						
B03	3-4	7.5'-10'	Shelby	65.0	101.7				8.7	0.2	47.9	51.9						
B03	3-6C	16'-16.5'	Mod Cal	47.1					5.2	0.0	73.8	26.2						
B03	3-7	20'-21.5'	SPT	113.4					17.9	0.5	13.9	85.7						
B04	4-3C	6'-6.5'	Mod Cal	29.8	123.6					0.0	96.2	3.8						
B04	4-6C	16'-16.5'	Mod Cal	13.5					0.5	14.4	71.8	13.8						
B05	5-3C	6'-6.5'	Mod Cal	36.0	118.3					0.0	77.4	22.6						
B05	5-7C	16-16.5'	Mod Cal							0.0	90.3	9.7						
B06	6-4C	11-11.5'	Mod Cal	33.7	118.7					0.0	84.7	15.3						
B07	7-3	8.5'-11'	Shelby	39.6	112.6	NV	NP	NP		0.0	30.0	70.0	504	1778	32.8	150		
B07	7 - 5B	15.5-16'	Mod Cal	58.0	104.3	69	33	36		0.4	1.3	98.3						
B07	7-6	17.5'-20'	Shelby	26.9	114.2	23	24	NP		0.0	21.6	78.4	749	2882				
B08	8-2B	6'-6.5'	Mod Cal	29.4	123.7					0.0	86.4	13.6						
B08	8-4B-C	16'-17'	Mod Cal							77.4	22.2	0.4						
B08	8-5	21.25-21.5'	SPT			39	20	19										
B09	9-3C	6'-6.5'	Mod Cal	32.9	120.7					0.0	10.7	89.3						
B09	9-5D	11'-12'	Mod Cal	26.0	126.6					0.6	74.4	25.0						
B09	9-6B	15.5'-16'	Mod Cal	22.1	131.3	29	18	11		0.0	24.5	75.5						
B09	9-8	25'-27.5'	Shelby	24.4	116.2					0.1	90.5	9.4						
B09	9-9C	31'-31.5'	Mod Cal	25.9	126.6					0.0	44.3	55.7						
B09	9-10B	35.5'-36'	Mod Cal			44	39	5		0.0	7.9	92.1						
B09	9-11B+D	40.5'-41' & 41.5'-42'	Mod Cal	19.2	123.0					9.8	86.7	3.5						
B09	9-13C	51'-51.5'	Mod Cal							78.6	20.8	0.6						
B09	9-16	65'-67.5	Shelby			NV	NP	NP		0.0	88.0	12.0						
B09	9-17C	70'-71'	Mod Cal	8.5						52.0	43.6	4.4						
B10	10-2	2.5'-5'	Shelby	19.9		21	20	1		0.0	48.9	51.1	245	2605			41.2 [4]	200 [4]
B10	10-3C	6'-7'	Mod Cal	17.8	136.5					0.1	92.7	7.2						
B10	10-7B	20.5'-22'	Mod Cal	11.4	146.1					31.7	62.2	6.1						
B10	10-9C	20.5-21.5	Mod Cal	17.0	122.0					12.6	84.2	3.2						

Table 2: Geotechnical Laboratory Test Results Summary

				Moisture a	nd Density	Atter	rberg L	imits		Grain	n Size Distrib	oution	TX-U	JU ^[2]	DS-C	CU ^[3]	DS-C	CD ^[3]
Boring	Sample ID	Depth	Sampler	Moisture Content ^[1]	Wet Unit Weight	LL	PL	PI	Organic Content	% Gravel	% Sand	% Fine	Confining Pressure	Undrained Shear Stress	φ	c	φ'	с'
		(ft)		(%)	(pcf)				(%)	(%)	(%)	(%)	(psf)	(psf)	(degrees)	(psf)	degrees	(psf)
B11	11-3	12'-14.5'	Shelby	118.2	84.7	112	51	61	5.7	0.0	2.9	97.1					27.9	0
B11	11-6	25'-27.5'	Shelby							0.0	91.3	8.7						
B11	11-12	55.5'-57.5'	Shelby	126.9	88.8	107	84	23	13.6	0.0	7.3	92.7	2506	909				
B11	11-14	65'-67.5'	Shelby	28.7	118.4	43	23	20	2.3	0.0	12.0	88.0			16	500		
B11	11-15A	70'-70.5'	Mod Cal	31.8	121.8	51	26	25		0.0	16.5	83.5						
B11	11-15D	71.5'-72'	Mod Cal	17.7	136.5					1.7	77.2	21.1						
B11	11-18C-D	91'-92'	Mod Cal	16.6	129.8	32	18	14		30.0	22.7	47.3						
B12	12-2C	6'-7'	Mod Cal	32.6	120.2				1.6	0.1	67.8	32.1						
B12	12-4B	15.5'-17'	Mod Cal	37.6	117.0					0.0	20.1	79.9						
Symbols:					Abbreviations:													

Table 2: Geotechnical Laboratory Test Results Summary

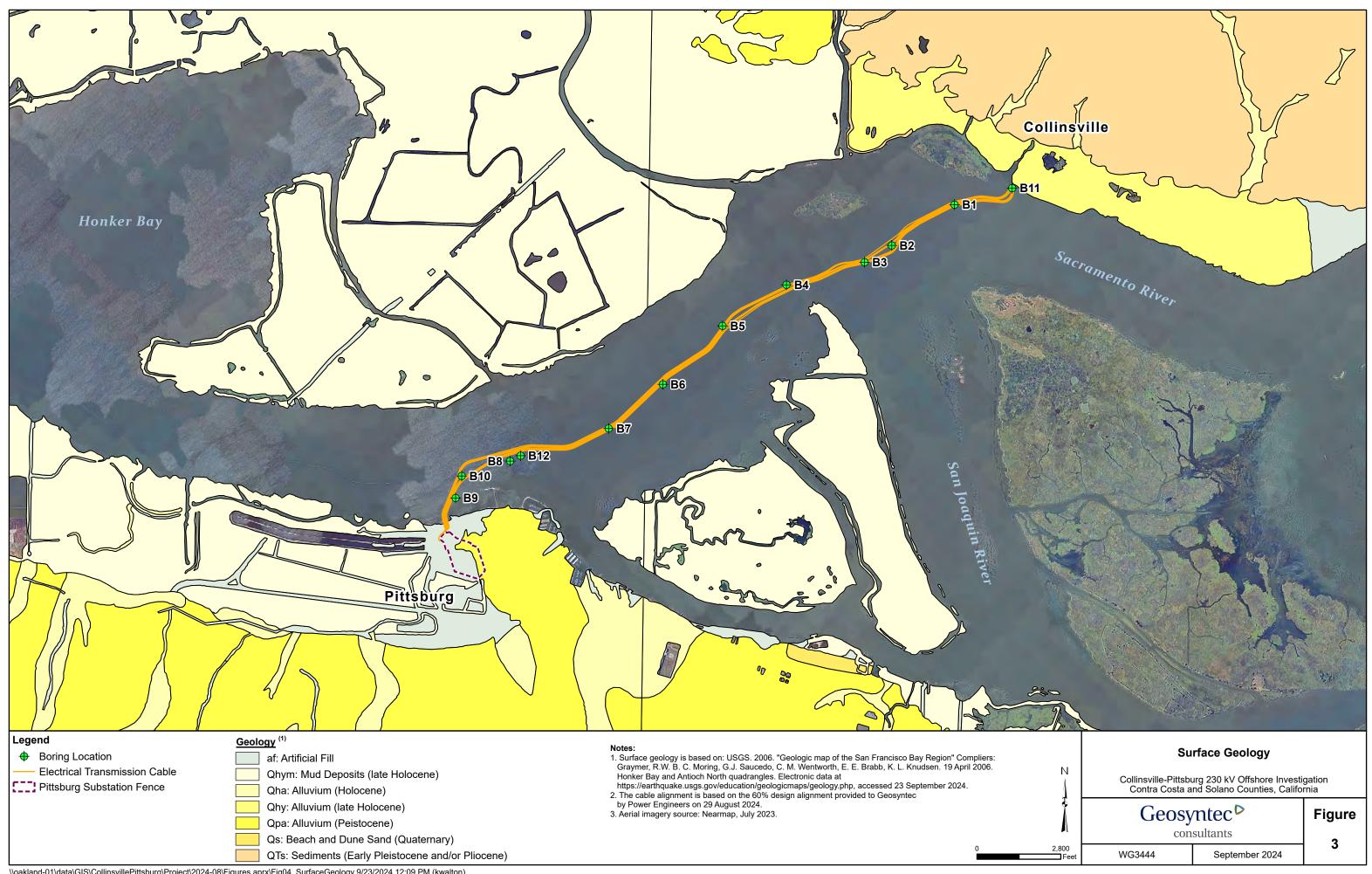

~					
<u>Symbols:</u>		Abbreviations:			
	not tested	ASTM	American Society for Testing and Materials	PI	plasticity limit
φ	total stress friction angle	DS-CD	Consolidated Drained Direct Shear Test (ASTM D3080)	PL	plastic limit
c	total stress cohesion	DS-CU	Consolidated Undrained Direct Shear Test (ASTM D3080M)	psf	pounds per square feet
φ'	effective stress friction angle	ft	feet	Shelby	Shelby Tube Sampler
c'	effective stress cohesion	LL	liquid limit	SPT	Standard Penetration Test San
%	percentage	Mod Cal	Modified California Sampler	TX-UU	Unconsolidated Undrained Tr
% Gravel	percentage of sample coarser than #40 sieve (by mass)	NP	non-plastic		
% Sand	percentage of sample between #200 and #40 sieve (by mass)	NV	no value		
% Fines	percentage of sample passing #200 sieve (by mass)	pcf	pounds per cubic feet		

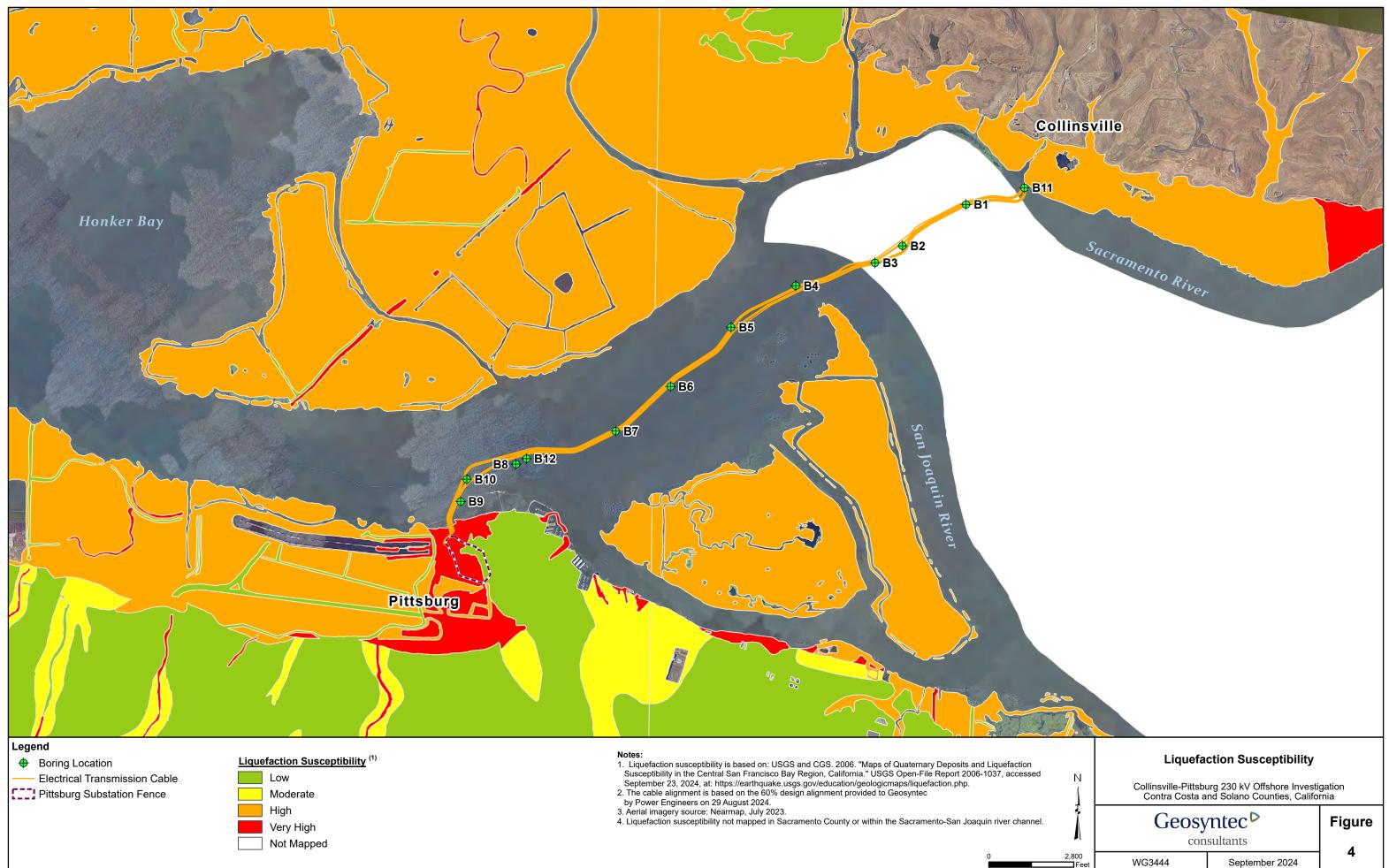
Notes:

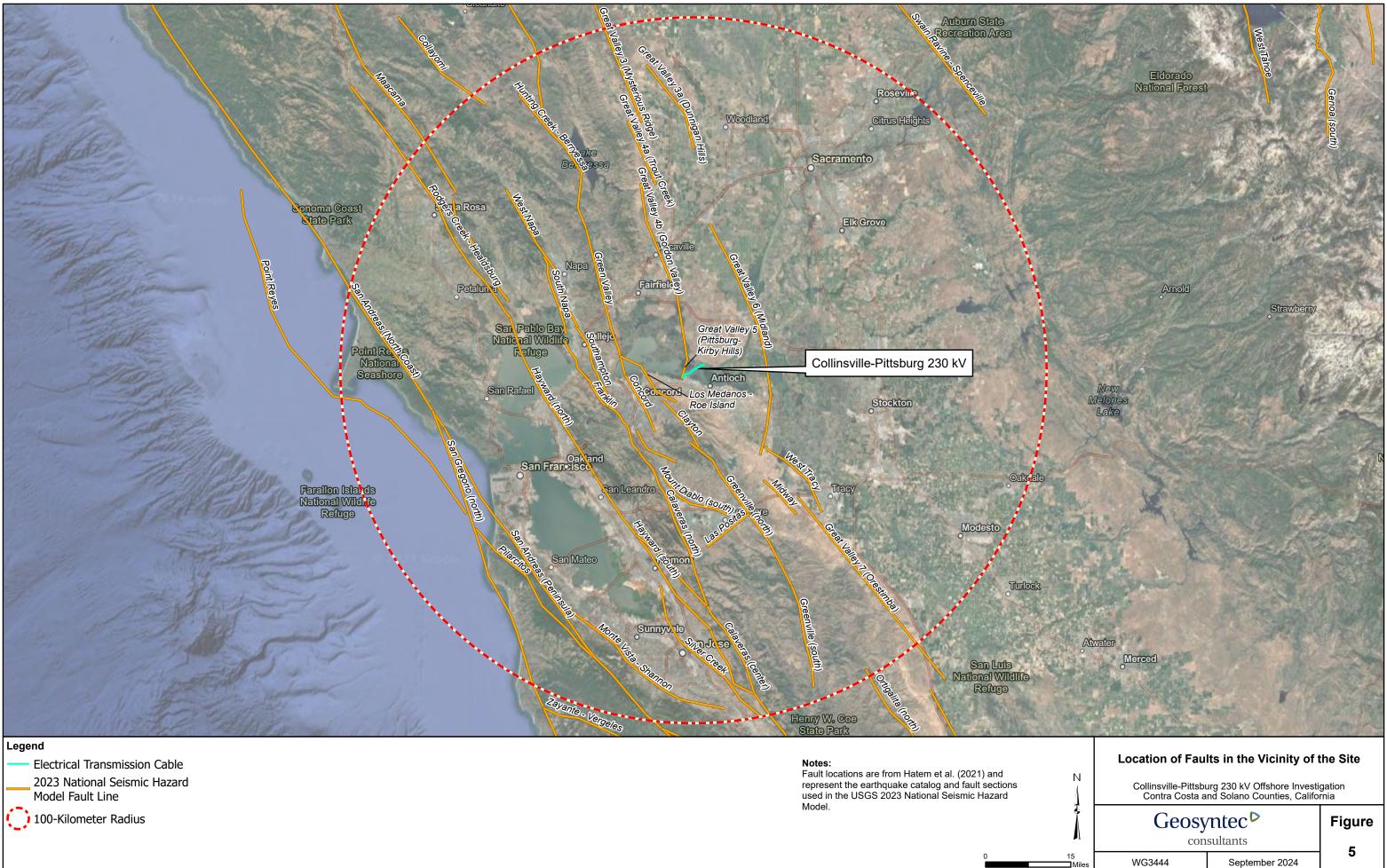
[1] Moisture content and wet unit weights are based on moisture-density measurements (ASTM D7263b) where available; otherwise, these values have been extracted from initial readings from strength or organic content tests. [2] TX-UU samples were subject to an isotropic confining pressure of slightly higher than the estimated in-situ stress, and back-pressure saturated prior to shear. Undrained shear strength was taken as half the peak deviator stress. [3] DS-CU and DS-CD tests were vertically consolidated at three selected normal pressures, then sheared at a strain rate of approximately 1.4%/min. for DS-CU and approximately 0.01%/min. for DS-CD. The reported strength parameters (c, φ , c', and φ') represent the total stress and effective stress strength conditions, respectively, for soil sheared along a horizontal plane, based on soil strength at 5% strain. For further details regarding the soil behavior during the direct shear test, refer to the laboratory test reports included in Appendix C. [4] Due to the high apparent friction angle, no φ' or c' values were reported by the laboratory. Values were added manually by Geosyntec following review of the data, but should be used with caution.

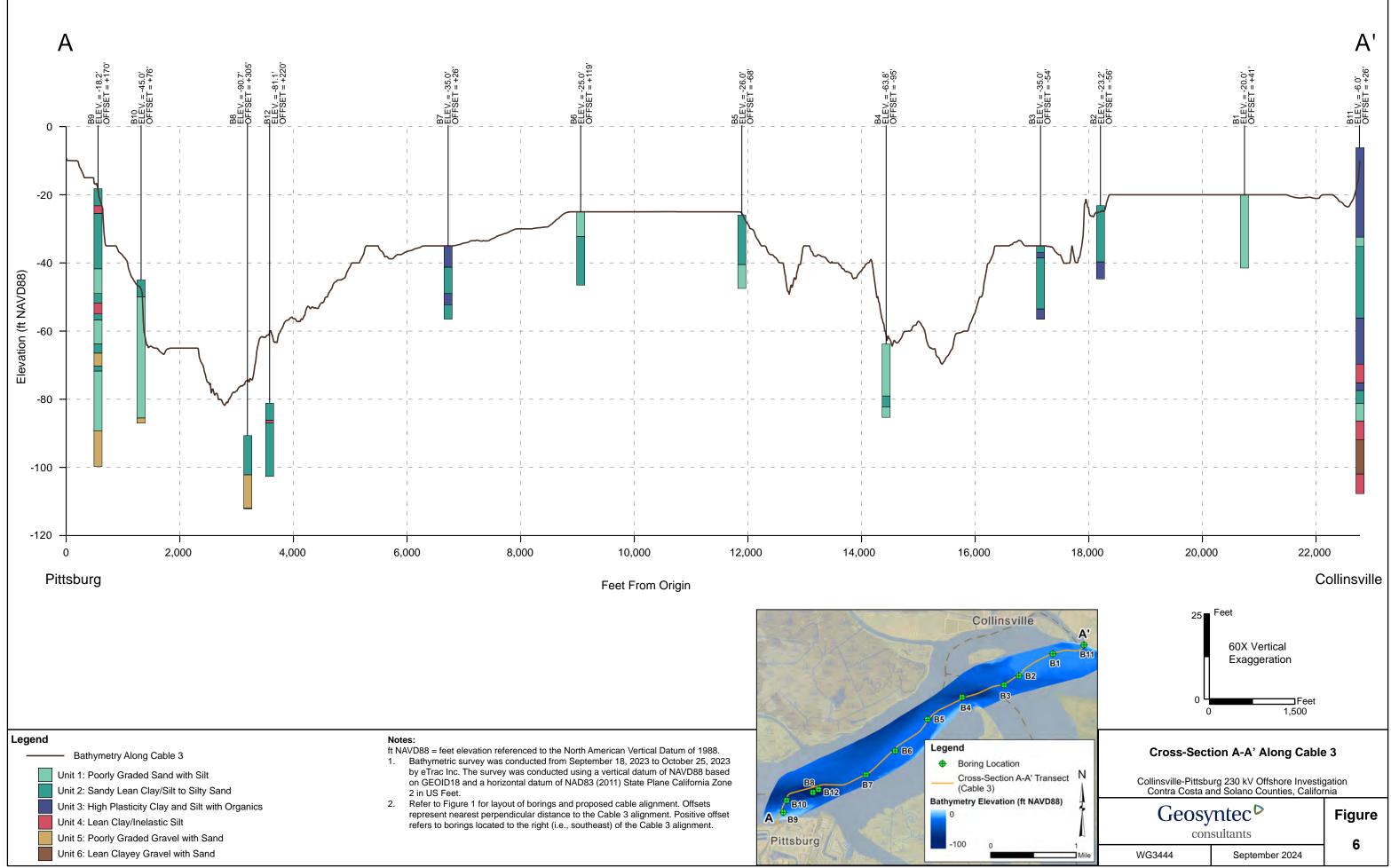
Sampler Triaxial Compression (ASTM D2850)

FIGURES




\\oakland-01\\data\GIS\CollinsvillePittsburg\Project\2024-08\Figures.aprx\Fig01_SiteLocationMap 9/20/2024 2:02 PM (kwalton)




Fee

\\oakland-01\data\GIS\CollinsvillePittsburg\Project\2024-08\Fig02_CrossSectionAA.ai

APPENDIX A Boring Logs

	GROUP SYMBOLS AND NAM	FS	FIELD AND LABORATORY TESTS
Graphic Group Names	Graphic Group Names	Graphic Group Names	
Lean Clay (CL)	Lean Clay with Sand (CL)	Sandy Lean Clay (CL)	AL Atterberg Limits - Liquid Limit, Plastic Limit, Plasticity Index (AASHTO T 89-02 & T 90-00)
Silty Clay (CL-ML)	Silty Clay with Sand (CL-ML)	Silt (ML)	CL Collapse Potential (ASTM D 5333-03)CN Consolidation (ASTM D 2435-04)
			CP Relative Compaction (CTM 216 - 06)
Silt with Sand (ML)	Sandy Silt (ML)	Poorly Graded Sand (SP)	CR Corrosion, Sulfates, Chlorides (CTM 643 - 99; CTM 417 - 06; CTM 422 - 06)
Poorly Graded Sand with	Poorly Graded Sand with	Poorly Graded Sand with Silt	CU Consolidated Undrained Triaxial (ASTM D 4767-0
	Clay (SP-SC)	(SP-SM)	DS Direct Shear (ASTM D 3080-04) EI Expansion Index (ASTM D 4829-03)
	(SW-SC)	<u></u> (SW-SM)	HD Hydrometer (ASTM) N ₆₀ N ₆₀ (ASTM)=N _m *(Eri/60)
Well-Graded Sand with Silt	Clayey Sand (SC)	Silty Clayey Sand (SC-SM)	OC Organic Content (ASTM D 2974-07)PA Particle Size Analysis (ASTM D 422-63 [2002])
Silty Sand (SM)	$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ Silty Sand with Gravel (SM)	Well-Graded Gravel with Sand (GW)	PE Permeability (CTM 220 - 05)
Well-Graded Gravel with Cla	y Mell-Graded Gravel with Silt		PM Pressure Meter PP Pocket Penetrometer
and Sand (GW-GC)	and Sand (GW-GM)	Clayey Gravel with Sand	RV R-Value (CTM 301 - 00)
Silty Gravel with Sand (GM)	Gravelly Lean Clay with Sand	Lean Clay with Gravel (CL)	SE Sand Equivalent (CTM 217 - 99)
			SG Specific Gravity (AASHTO T 100-06)
Fat Clay (CH)	Fat Clay with Gravel (CH)	Gravelly Lean Clay (CL)	SL Shrinkage Limit (ASTM D 427-04)
Fat Clay with Sand (CH)	Gravelly Fat Clay with Sand	Sandy Lean Clay with Gravel	SW Swell Potential (ASTM D 4546-03) TV Pocket Torvane
			UC Unconfined Compression (ASTM D 2166-06) UU Unconsolidated Undrained Triaxial
Organic Silt (OL)	Organic Silt with Gravel (OL)	Clayey Sand with Gravel (SC)	(ASTM D 2850-03)
Organic Elastic Silt (OH)			UW Unit Weight (ASTM D 4767-04) VS Vane Shear (AASHTO T 223 - 96 [2004])
			WC Water Content (ASTM D 2216-05)
			SAMPLER GRAPHIC SYMBOLS
			Standard Penetration Test (1.4 in. ID)
			Standard California (2.5 in. ID)
			Modified California (2.0 in. ID)
			Shelby Tube (2.87 in. or 2.37 in. ID)
(Visual Manual Procedure). Where laboratory to	al accordance with ATM D2488-06, Standard Pracesting was performed, classifications were modifie Engineering Purposes (Unified Soil Classification s	d in general accordance with ASTM D2487-06,	Bag Sample Sonic Core
Borderline symbols, two group symbols separat be between 45% and 55%, (2) percentages of a graded, (4) soil could be either a sit for a clay, o plasticity. Refer to DWR Soil and Rock Logging	ted by a slash, may be used in field visual classific sand and gravel are estimated to be about the san (r (5) fine-grained soil has properties indicating tha g, Classification, and Presentation Manual for guid	ation when (1) percentage of fines is estimated to re, (3) soil could be either well graded or poorly it is at the boundary between low and high elines in the use of borderline symbols.	Dry Core Punch Core
	WELL GRAPHIC SYMBOL	S	WATER LEVEL SYMBOLS
Blank casing in cement grout	Blank casing in filter sand	Native backfill or	$\underline{\nabla}$ First water encountered during drilling
			Water level measured at end of drilling Static water level reading (short term)
Blank casing in bentonite seal	Slotted casing in filter sand	Vibrating wire piezometer	
Ceosyntec consultants	Collinsville-Pittsburç	g 230 kV Offshore	BORING LEGEND

GEOS LEVEE LEGEND P1

Sheet 1 of 2

	CONSISTENCY OF COHESIVE SOILS (AASHTO 1988)							
Descriptor	Pocket Penetrometer (tsf)	Torvane (tsf)						
Very Soft	< 0.25	< 0.12						
Soft	0.25 - 0.50	0.12 - 0.25						
Medium Stiff	0.50 - 1.0	0.25 - 0.50						
Stiff	1.0 - 2.0	0.50 - 1.0						
Very Stiff	2.0 - 4.0	1.0 - 2.0						
Hard	> 4.0	> 2.0						

APPARENT DENSITY OF COHESIONLESS SOILS (ASTM 6066-96 (2004))				
Descriptor	SPT N(60) - Value (blows / foot)			
Very Loose	0 - 4			
Loose	5 - 10			
Medium Dense	11 - 30			
Dense	31 - 50			
Very Dense	> 50			

MC	MOISTURE (ASTM D 2488-06)							
Descriptor	Criteria							
Dry	Absence of moisture, dusty, dry to the touch							
Moist	Damp but no visible water							
Wet	Visible free water, usually soil is below water table							

SOIL PARTICLE SIZE (ASTM D 2488-06)						
Descriptor		Size				
Boulder		> 12 inches				
Cobble		3 to 12 inches				
Gravel	Coarse	3/4 inch to 3 inches				
Graver	Fine	No. 4 Sieve to 3/4 inch				
	Coarse	No. 10 Sieve to No. 4 Sieve				
Sand	Medium	No. 40 Sieve to No. 10 Sieve				
	Fine	No. 200 Sieve to No. 40 Sieve				
Silt and Clay		Passing No. 200 Sieve				

	PLASTICITY OF FINE-GRAINED SOILS (ASTM D 2488-06)						
Descriptor	Criteria						
Nonplastic	A 1/8-inch thread cannot be rolled at any water content.						
Low	The thread can barely be rolled, and the lump cannot be formed when drier than the plastic limit.						
Medium	The thread is easy to roll, and not much time is required to reach the plastic limit; it cannot be rerolled after reaching the plastic limit. The lump crumbles when drier than the plastic limit.						
High	It takes considerable time rolling and kneading to reach the plastic limit. The thread can be rerolled several times after reaching the plastic limit. The lump can be formed without crumbling when drier than the plastic limit.						

DR	Y STRENGTH OF FINE-GRAINED SOILS (ASTM D 2488-06)	DILATANCY OF FINE-GRAINED SOILS (ASTM D 2488-							
Descriptor	Criteria	Descriptor	Criteria						
None	Dry specimen crumbles into powder with mere pressure of handling.	None Slow	No visible change in the specimen.						
Low Medium	Dry specimen crumbles into powder with some finger pressure. Dry specimen breaks into pieces or crumbles with considerable finger pressure.	Slow	Water appears slowly on the surface of the specimen during shaking and does not disappear, or disappears slowly, upon squeezing.						
High	Dry specimen cannot be broken with finger pressure; will break into pieces between thumb and a hard surface.	Rapid	Water appears quickly on the surface of the specimen during shaking and						
Very High	Dry specimen cannot be broken between thumb and a hard surface.		disappears quickly upon squeezing.						

т	OUGHNESS OF FINE-GRAINED SOILS (ASTM D 2488-06)	CE	CEMENTATION (ASTM D 2488-06)						
Descriptor	Criteria	Descriptor	Criteria						
Low	Only slight pressure is required to roll the thread near the plastic limit. The thread and the lump are weak and soft.	Weak	Crumbles or breaks with handling or little finger pressure.						
Medium	Medium pressure is required to roll the thread to near the plastic limit. The thread and the lump have medium stiffness.	Moderate	Crumbles or breaks with considerable finger pressure						
High	Considerable pressure is required to roll the thread to near the plastic limit. The thread and the lump have very high stiffness.	Strong	Will not crumble or break with finger pressure.						

Collinsville-Pittsburg 230 kV Offshore

BORING LEGEND

Geosyntec Consultants

GEOS LEVEE LEGEND P2

	START			DATE CO 07/31/2	GROUND E	EVAT	ION	1		ELE	EVATI	ON DA	TUM			TOTAL DEPTH OF BORING 21.5'						
DRILL	LING CO	ONTRA	CTOR		-		DRILLER'S	NAME				HE		S NAN	IE			TOTAL DEPTH OF FILL N/A				
DRILL	LING ME ary Wa	ETHOD)				DRILL RIG Mobile B-	NAKE		D MO								CONSULTANT COMPANY Geosyntec				
DRILL	BIT SI		D TYPE	E (HOLE DIAMET	ER)		DRILLING R											FIELD LOGGER J. Xia				
	HOLE	INCLIN	ATION				N/A CASING TY	PE, DI	AME	ETER	, INS	TALLA		DEPT	н			FIEL	D LOG	REVIEWER		
N/A SAMP	LER T	(PE(S)					N/A SPT HAMME		PE									D. Umberg HAMMER EFFICIENCY				
	, Mod						Automatic	· ·				BE	FORE	DRILL	ING			92% AFTER DRILLING				
N/A			0.								20.8							21. RY DA	3'			
l (ft)	eet)	_ v				ation		lber	(%	in. Do <u>t</u> i	(tsf		BURA				_				
ELEVATION (ft)	DEPTH (feet)	Material Graphics		CLASSIF	ALS	Sample Location		Sample Number	Recovery (%)	Blows per 6 in. [Blows per foot]	N ₆₀ (ASTM)	PP or TV, tsf	Water Content (%)	Liquid Limit	Plasticity Index	Fines, % <200	Other Lab Tests	REMARKS				
	0		<u>POOF</u> gray;	RLY GRADED S wet; 92% poorly	AND with silt (S graded fine san	8P-SM); nd; 8% n	very loose; onplastic fine	es.	1	1-1	40	1 0 0 [0]	0							08:21 AM; All samples collected for environmental test. White plastic		
	2																			 piece present. 20.8 feet from mud line at 08:24 AM. 		
	5 - - 6 - - 7 -		As ab	ove except loos	e.				1	1-2	65	1 4 5 5				NV	NP	8.1		08:42 AM		
	8 - - 9 -		As ab	oove.					1	1-3	90	1 4 5 [9]	14							08:45 AM		
	10 - - 11 - - - 12 -		As ab	ove.					1	1-4	70	2 6 4 6			25.4			8.2		09:01 AM		
	13 - - 14 -																					
	15 - - 16 - - - 17 -		As ab	iove.					1	1-5	70	0 0 1 1								09:10 AM		
	- 18 - - 19 -																					
;	20											I	1	1						1		
G	Geosyntec consultants Borehole Location: <u>Pittsburg-Co</u> Coordinates: Northing: <u>221473</u> Latitude: <u>38.0697</u>						insville C .25 E	25 Easting: 6176062.07									OG	G OF BORING B1 Sheet 1 of 2				
engine	ers i scientis	as i linnoyat	ture: _S	Coord. System: <u>NAD 1983</u> Collinsville-Pittsburg 230 kV Offshore										0 kV Offshore								

Г													ion	ber			ot]	[100			LA	BOR	ATOF	Y DA	TA	
	ELEVATION (ft)	DEPTH (feet)	Material Graphics			CLA	SSIF		ON O scripti		TERIAI	LS		Sample Location	Sample Number	Recovery (%)	Blows per 6 in.	[blows per looi]	N ₆₀ (ASTM)	PP or TV, tsf	Water Content (%)	Liquid Limit	Plasticity Index	Fines, % <200	Other Lab Tests	REMARKS
		-20- 21 -		As ab	ove.									X	1-6	90	0 3 4 [7]		11							09:20 AM
		22 -	<u></u>	Borin	g terr	ninate	ed at 2	21.5 fe	et bgs	S.					v		1.0					1	1	1		
		23 - - 24 -																								
		25 -																								
		26 -																								
		27 - 28 -																								
		 29 -																								
		30 -																								
		31 - 32 -																								
		33 -																								
		34 -																								
		35 - 36 -																								
		37 -																								
		38 -																								
		39 - - 40 -																								
		- 41 -																								
		42 - - 43 -																								
		44 -																								
щCP		-45-																								
GEOS LEVEE TEMPLATE CP	Geosyntec consultants engineers / scientiss / innovators				Bor Coc	ehol ordin	e Loc ates:	Nort	thing:	221	-Collin: 4738.2 697323	5	Eas	sting	: <u>Co</u> : <u>61</u> : de : _	7606	2.07					L	OG		BO B1	RING
OS LEVE											-								lline	Sheet 2 of 2 0 kV Offshore						
В					Cha	Survey Method: <u>N/A</u> Coord. System: <u>NAD 1983</u> Channel / River Name / Feature: <u>Sacramento River</u>											-		/1115							

DATE	START 9/2024		DATE COMPLETED 07/29/2024	GROUND ELE	EVATI	on da	TUM			TOTAL DEPTH OF BORING 22.5'									
	NG CC		ACTOR	DRILLER'S NA	ME				LPER'	'S NAM	IE			TOTAL DEPTH OF FILL N/A					
DRILLI		THO)	DRILL RIG MAI Mobile B-80										CON					
	,		ID TYPE (HOLE DIAMETER)	DRILLING ROD				-							D LOGG				
-	HOLE I	NCLI	IATION	CASING TYPE,	DIA	METE	R, INS	TALL	ATION	I DEPT	н			FIEL	-				
SAMPL) Shelby	SPT HAMMER TYPE Automatic, 140 lb/30											HAMMER EFFICIENCY 92%				
			FILL OR COMPLETION	DEPTH TO MUD LINE BEFORE DRILLING 28'										AFTER DRILLING not measured					
					ç	L					LA	BOR	ATOF						
ELEVATION (ft)	DEPTH (feet)	Material Graphics	CLASSIFICATION OF MATERI (Description)	ALS	Sample Location	Sample Number	Recovery (%)	Blows per 6 in. [Blows per foot]	N ₆₀ (ASTM)	PP or TV, tsf	Water Content (%)	Liquid Limit	Plasticity Index	Fines, % <200	Other Lab Tests	REMARKS			
			<u>SILT</u> (ML); very soft; greenish gray; wet; ~90- plasticity fines; ~5-10% poorly graded fine sar organics.	95% low nd; trace	X	2-1	100	1 1 [2]	3							12:13 PM			
	2 - - 3 - 4 -		As above.			2-2	100				40.5	40	5		TX-UU DS-CD	12:47 PM; 0 psi			
	5 - - 6 -		As above except soft.	27% poorly		2-3	100	2 4 7 8								12:57 PM			
	7 - - 8 -		SANDY SILT (ML); very soft; dark gray; wet; 2 graded fine sand; 73% low plasticity fines; trad	ce organics.		2-4	100	1 1 2	5		34.2			73.1		13:03 PM			
	9 - - 10 -							[3]								42-25 DM			
	- 11 - - 12 -		As above.			2-5	100	4 2 2 1			34.4			67.5		13:25 PM			
	15 - - 16 -		As above.			2-6	100	1 1 0 1								13:39 PM			
	17 - - 18 - - 19 -		SANDY SILT with organics (OH); very soft; da ~55% medium plasticity fines and organic soil graded fine sand; ~7% organics.	ark gray; wet; l; 38% poorly															
	-		SANDY SILT with organics (OH); very soft; da	ark gray; wet;															
	-20-20-20-20-20-20-20-20-20-20-20-20-20-																		
	Borehole Location: <u>Pittsburg-Collinsville</u> County: <u>Contra Costa/Solano</u>																		
		sulta	nts		-		<u>73968</u> 121.8		905 V					-	B2	Sheet 1 of 2			
engineer	s í scientis	ts i linnoy	Survey Method: <u>N/A</u>			Syste	m: _1	NAD 1	1983	_	Co	llins	ville-	Pittsb	ourg 230) kV Offshore			

GEOS LEVEE TEMPLATE CP

ft)	t)			L	e_		ot]			LA	BORA	ATOR	Y DA	ATA	
ELEVATION (ft)	DEPTH (feet)	Material Graphics	CLASSIFICATION OF MATERIALS (Description)	Sample Location	Sample Number	Recovery (%)	Blows per 6 in. [Blows per foot]	N ₆₀ (ASTM)	PP or TV, tsf	Water Content (%)	Liquid Limit	Plasticity Index	Fines, % <200	Other Lab Tests	REMARKS
			~65% medium plasticity fines; ~28% poorly graded fine sand; 7% organics.							76.0	90	37		TX-UU DS-CU	13:52 PM
	21 -				2-7										
	22 -														
	23 -		Boring terminated at 22.5 feet bgs.												
	24 -	-													
	25 -														
	26 -														
	27 -	-													
	28 -														
	- 29 -														
	- 30														
	31 -	-													
	32 -														
	33 -	-													
	34 -	-													
	- 35 -	-													
	36 -	-													
	37 -	-													
	38 -	-													
	39 -														
	- 40	-													
	41 -														
	42 -														
	43 -														
	44 -														
	-45-														
Ge			Coordinates: Northing: <u>2213374.67</u> E Latitude: <u>38.06590548 N</u> L	ounty: asting ongitu	: 617	73965	5.10		_		L	OG		BO B2	RING Sheet 2 of 2
engineer		ns i linnoya	10x	oord. River	Syster	n: <u> </u>	NAD 1	983	_	Co	llins	ville-l	Pittsb	ourg 230) kV Offshore

DATE	START 9/2024		DATE COMPLETED 07/29/2024	GROUND ELE	ON		EL	EVATI	on da	TUM				TOTAL DEPTH OF BORING 21.5'					
DRILL		ONTR		DRILLER'S NA	ME				LPER	'S NAN	IE			TOTAL DEPTH OF FILL N/A					
DRILL		ETHO	D	DRILL RIG MAI Mobile B-80										CON		NT COMPANY			
			ID TYPE (HOLE DIAMETER)	DRILLING ROD			-								DLOGO				
-	HOLE	NCLI	NATION	CASING TYPE, N/A	DIA	METE	ER, INS	STALL	ATION	I DEPT	н			FIEL		REVIEWER			
SAMP	LER T) Shelby	SPT HAMMER Automatic, 1										-	MER EF	FICIENCY			
				DEPTH TO MU		BE 37	FORE	ING											
	t)				L L	Ŀ					LA	BOR	ATOF	RY DA	TA	_			
ELEVATION (ft)	DEPTH (feet)	Material Graphics	CLASSIFICATION OF MATERIA (Description)	ALS	Sample Location	Sample Number	Recovery (%)	Blows per 6 in. [Blows per foot]	N ₆₀ (ASTM)	PP or TV, tsf	Water Content (%)	Liquid Limit	Plasticity Index	Fines, % <200	Other Lab Tests	REMARKS			
			SILT with sand (ML); very soft; dark gray; mois medium plasticity fines; 15% poorly graded fin	st; 85% e sand.	\mathbb{N}	3-1	100	0 1	3							08:42 AM			
	1 -		SANDY SILT (ML); very soft; dark gray; wet; ~ nonplastic fines; ~40% poorly graded fine sand	60% d.	\square	0-1		1 [2]								-			
	2 -			 dium plasticity				0				69	35	72.6		08:58 AM			
	3 -		fines; 27% poorly graded fine sand; trace orga	inics.	X	3-2	100	1	5			05		12.0					
	4 -							[3]								_			
	5 -		As above.					1			55.2	52	22	74.3		09:21 AM			
	6 -		SILT with sand (MH); soft; gray; wet; 74% med fines; 26% poorly graded fine sand; trace orga	edium plasticity	3-3	100	-												
	7 -	-	nnes, 20% poorty graded inte sand, trace orga	inico.															
	8 -		SANDY SILT with organics (ML); soft; gray; we plasticity fines; 39% poorly graded fine sand; S	et; 52% low 9% organics.							65.0			51.9		09:40 AM			
	9 -					3-4	100												
	- 10 -		SANDY SILT (ML); firm; dark gray; wet; ~65%	low plasticity				5								09:50 AM			
	- 11 -		fines; ~35% poorly graded fine sand; trace qua when pressed.	artz, dilates	N	3-5	100	4											
	- 12 -		SILTY SAND (SM); loose; dark gray; wet; ~70 graded fine sand; ~30% nonplastic fines.	% poorly	1			,								-			
	- 13 -																		
	- 14 -				-														
	-																		
	- 15		SILTY SAND with organics (SM); loose; dark of sand; 26% nonplastic fines; 5% organics.	gray; wet; 69%	V			2 7 2								10:38 AM			
	16 -				Ν	3-6	100	4			47.1			26.2					
	- 17 -															-			
	- 18 -																		
	19 -																		
	(continued) Borehole Location: Pittsburg-Collinsville County: Contra Costa/Solano																		
C	oor	mt	Coordinates: Northing: 2212814.	72 Eas	ting	: 61	7305	7.00		_		Ľ	OG		[:] ВО В3	RING			
Ut	con	sulta		<u>2 IN</u> LON	yıtu	ue:	121.8	34987	5 77	- [<u> </u>	Sheet 1 of 2			
enginee	rs i scientis	as i linno	Survey Method: N/A			Syste	em: _	NAD	1983	_ [Co	llins	ville-	Pittsb	urg 23	0 kV Offshore			
			Channel / River Name / Feature: _S	acramento Ri	ver					_									

GEOS LEVEE TEMPLATE CP

										LA	30R/	TOR	Y DA	TA	
ELEVATION (ft)	DEPTH (feet)	Material Graphics	CLASSIFICATION OF MATERIALS (Description)	Sample Location	Sample Number	Recovery (%)	Blows per 6 in. [Blows per foot]	N ₆₀ (ASTM)	PP or TV, tsf	Water Content (%)	Liquid Limit	Plasticity Index	Fines, % <200	Other Lab Tests	REMARKS
	20 - 21		ORGANIC CLAY with sand (CH); stiff; dark gray; wet; 68% medium plasticity fines; 14% poorly graded fine sand; 18% fine-grained rootlets and organics.		3-7	100	4 4 5 [9]	14		113.4			85.7		
	22 -		Boring terminated at 21.5 feet bgs.	,											
	23 -	-													
	24 -	-													
	25 -														
	26 -														
	27 -	-													
	28 -														
	29 -														
	30 -														
	31 -														
	32 -	-													
	33 -	-													
	34 -	-													
	35 -														
	36 - - 37 -														
	- - 	-													
	- 39 -														
	- 40 -														
	- 41 -	-													
	42 -	-													
	- 43 -	-													
	- 44 -	-													
	-45-	-													
			Borehole Location: _Pittsburg-Collinsville Cou	ntv	Con	itra C	osta/	Solar	10			<u>~~</u>	07		
Ge	eosy	nteo	Coordinates: Northing: 2212814.72 Eas	ting	: <u>617</u>	3057	7.00		-		L(UG		- BOI B3	RING
	con	sultant	5						-						Sheet 2 of 2
			Survey Method: <u>N/A</u> Coo Channel / River Name / Feature: Sacramento Ri	rd. ver	Syster	n: <u>N</u>	NAD 1	983	-	Co	llinsv	/ille-l	Pittsb	ourg 230	kV Offshore

	START 6/2024		DATE COMPLETED 07/26/2024	GROUND ELE	VATI	ON		ELI	EVATI	ON DA	TUM			тот. 21.		TH OF BORING
DRILL	ING CO	NTRA		DRILLER'S NA	ME				LPER' /A	'S NAN	IE				AL DEP	TH OF FILL
DRILL Rota	ING ME	Sh		DRILL RIG MA Mobile B-80	abo	oard R	/V Qi	uin De	elta					CON Ge	SULTA osynte	
DRILL 5 in	BIT SI	ZE AN	D TYPE (HOLE DIAMETER)	DRILLING ROD N/A) TY	PE AN		METE	R					FIEL	D LOGO Kia	SER
BORE N/A	HOLEI	NCLIN	ATION	CASING TYPE N/A	, DIA	METE	r, INS	TALL	ATION	I DEPT	Ή				D LOG Umber	REVIEWER g
SAMP SPT	LER TY	'PE(S) Cal		SPT HAMMER Automatic,										HAM 929		FICIENCY
	,		ILL OR COMPLETION	DEPTH TO MU						DRILL				AFTE	ER DRIL	
					Ę	L						BOR/	ATOF			
ELEVATION (ft)	DEPTH (feet)	Material Graphics	CLASSIFICATION OF MATERI (Description)	IALS	Sample Location	Sample Number	Recovery (%)	Blows per 6 in. [Blows per foot]	N ₆₀ (ASTM)	PP or TV, tsf	Water Content (%)	Liquid Limit	Plasticity Index	Fines, % <200	Other Lab Tests	REMARKS
	-0 		POORLY GRADED SAND (SP); medium der some white and orange pieces; 95% poorly g sand; 5% nonplastic fines.	nse; gray with raded fine	X	4-1	30	3 6 7 [13]	20							10:11 AM
	- 3 - - 4 -		As above.			4-2	100	2 4 6 [10]	15							10:25 AM
	- 5 - 6 -		As above except dense.			4-3	90	14 16 19 28			29.8			3.8		- 10:40 AM
	7 - - 8 - - 9 -		As above except medium dense.			4-4	2	7 11 8 [19]	29							10:55 AM
	- - 10 - - 11 -		As above.			4-5	100	5 7 12 16								- 11:25 AM
	12 - 13 - 14 -															
	15 - - 16 - - 17 -		As above. <u>SILT with sand (ML); very stiff; dark gray; we</u> medium plasticity fines; ~20% poorly graded <u>SILTY SAND</u> (SM); very dense; gray with whi particles; wet; 72% sand; 14% gravel; 14% n	fine sand.		4-6	70	17 14 25 26			13.5			13.8		11:45 AM
	- - 18 - 19 - -															
	20			/	time		<u> </u>	1	1	1			1			1
Ge	eosy	nte		linsville Cou 0.18 Eas	ting	ed) <u>Cor</u> : <u>61</u> de : _	70444	1.98				L	OG		⁻ ВО В4	RING Sheet 1 of 2
enginee	rs i scientis	ts i linnoyar	Survey Method: <u>N/A</u> Channel / River Name / Feature: <u>S</u>			Syste	m: <u>1</u>	NAD 1	1983	_	Co	llinsv	ville-	Pittsb	ourg 23	0 kV Offshore

Г														_						L	ABOR	ATOF	RY DA	TA	
	ELEVATION (ft)	DEPTH (feet)	Material Graphics					(Desc	criptio	on)	ERIAI			Sample Location	Sample Number	Recovery (%)	Blows per 6 in. [Blows per foot]	N ₆₀ (ASTM)	PP or TV, tsf	Water Content	Liquid Limit	Plasticity Index	Fines, % <200	Other Lab Tests	REMARKS
		—20— - 21 -	· · · · · · · · · · · · · · · · · · ·	\nonpl	astic f	ines.						e; dark sand; ~ dark gra		ſ	4-7	80	7 9 17 [26]	40							11:55 AM
		22 - - 23 -		with w well-g Boring	vhite a <u>jraded</u> g term	ind bro subro iinateo	own p ounde d at 2'	articles d grav 1.5 fee	s; wet el; ~5 t bgs.	; ~85% <u>% non</u>	6 sand	dark gra ; 10% c fines.		[
		24 -																							
		25 - - 26 -																							
		 27 -																							
		- 28 - - 29 -																							
		- 30 -																							
		31 - - 32 -																							
		- 33 -																							
		34 - 35 -																							
		36 - - - 37 -																							
		39 - - 40 -																							
		41 -																							
		42 - - 43 -																							
		- 44 -																							
ПCP		-45-																							
GEOS LEVEE TEMPLATE CP	Ge		nte				tes:	North	ing:	2212	Collins 2059.1 32153		Eas	ting	<u>Cor</u> 617 de:	70444	1.98				L	OG		BO B4	RING
GEOS LEV	engineen		sultan		Surv Chai	vey Me nnel /	ethoo Rive	1: <u>N//</u> r Nam	A 1e / Fe	eature	e: Sa	crame	Coo nto Ri	ord. S	Syste	m: <u>1</u>	NAD 1	1983	_	с	ollins	ville-	Pittsk	ourg 23	Sheet 2 of 2 0 kV Offshore

	START 5/2024		DATE COMPLETED 07/25/2024	GROUND ELE	/ATI	ON		ELE	VATI	ON DA	TUM			тот. 21.		TH OF BORING
DRILL		ONTRA	ACTOR	DRILLER'S NA	ME			HEI N/		S NAN	IE				AL DEP	TH OF FILL
DRILL	ING MI ary Wa	ETHOD)	DRILL RIG MA Mobile B-80										CON		
			D TYPE (HOLE DIAMETER)	DRILLING ROI											DLOGO	
-	HOLE	INCLIN	IATION	CASING TYPE	, DIA	METE	r, Ins	TALLA		DEPT	Ή			FIEL		REVIEWER
SAMP			Shelby	SPT HAMMER Automatic,											MER EF	FICIENCY
			FILL OR COMPLETION	DEPTH TO MU				BE 28.		DRILL	ING			AFT	ER DRIL measu	
					ç	5			-		LA	BOR	ATOR	RY DA		
ELEVATION (ft)	DEPTH (feet)	Material Graphics	CLASSIFICATION OF MATERI (Description)	ALS	Sample Location	Sample Number	Recovery (%)	Blows per 6 in. [Blows per foot]	N ₆₀ (ASTM)	PP or TV, tsf	Water Content (%)	Liquid Limit	Plasticity Index	Fines, % <200	Other Lab Tests	REMARKS
	-0		SILTY SAND (SM); very loose; dark gray; we graded sand; ~20% nonplastic fines.	t; ~80% poorly	N	5-1	100	1 2	6							12:00 PM
	1 - - 2 -		<u>SILT with sand</u> (ML); soft; dark brownish gray nonplastic fines; ~20-30% sand.	/; wet; ~70-80%		J-1		2 [4]	0							-
	3 -		No recovery.			5-2	0									12:20 PM; No recovery, 100 psi
	5 -		<u>SILTY SAND</u> (SM); medium dense; gray; wet graded sand; ~23% nonplastic fines.	;; 77% poorly		5-3	75	3 6 6 11			36.0			22.6		12:35 PM
	7 - - 8 - - 9 -		As above except loose.			5-4	100	2 4 4 [8]	12							- 13:00 PM
	- 10 - - 11 -		As above except medium dense.			5-5	75	4 7 12 15								13:10 PM
	12 - - 13 - - 14 -		As above.			5-6	100	8 11 13 [24]	37							13:25 PM
	15 - - 16 -		POORLY GRADED SAND with silt (SP-SM); 90% poorly graded fine sand; 10% noplastic f	dense; gray; fines.		5-7	75	9 15 20 24						9.7		13:40 PM
	17 - - 18 - - 19 -															
;	-20-	<u> </u>	1	/	tim		1	1		1	1		1			1
Ge	eosy	mte sultan		insville Cou 3.02 Eas	ting	<u>Co</u> : 61	68308	<u>;osta/;</u> 3.10 66260				L	OG		5 BO B5	RING Sheet 1 of 2
enginee	ers i scientis	as i linnoya	Survey Method: <u>N/A</u> Channel / River Name / Feature: <u>S</u>			Syste	m: <u></u>	NAD 1	983	_	Co	llins	ville-	Pittsb	urg 23	0 kV Offshore

Г																		LA	BOR	ATOR	Y DA	TA	
	ELEVATION (ft)	DEPTH (feet)	Material Graphics				(Descr	iption)	ATERIAI			Sample Location	Sample Number	Recovery (%)	Blows per 6 in. [Blows per foot]	N ₆₀ (ASTM)	PP or TV, tsf	Water Content (%)	Liquid Limit	Plasticity Index	Fines, % <200	Other Lab Tests	REMARKS
		20 - 21 -		As abo nonpla	ove except astic fines.	mediı	ım dens	se; ~70%	₀ sand; ~	·30%		M	5-8	100	7 12 13 [25]	38							14:05 PM
		22		Boring	terminated	1 at 21	5 feet I	bgs.							[25]								
EMPLATE CP		40 - - 41 - - 42 - - - - - - - - - - - - - - - - - - -			Borehole Coordina	Loca tes:	tion: <u>l</u>	Pittsbur ng: 22	<u>g-Collin</u> 10688.0	sville 02			_ <u>Con</u> 616			Solar	no		L(OG			RING
GEOS LEVEE TEMPLATE CP		con	nte sultan	ec C	Survey M		Latitud	le: <u>38.</u>	058303	<u>1 N</u>	Long	gitud	de: <u>1</u> Syster	21.8	66260		_		lline	ville		B5	Sheet 2 of 2 0 kV Offshore
GE					Channel /	Rive	r Name	/ Featu	ire: Sa	crame	nto Riv	ver	yster	n. <u>r</u>		303	-	00		•111 C-I	11131	ary 230	

	STARTE 5/2024	D			COMPLETED)	GROUND EI	EVATI	ON		ELE	EVATI	ON DA	TUM			тот. 21.		TH OF BORING
DRILLI	ING CON		CTOR	0112			DRILLER'S N/A	NAME			HE N		'S NAN	1E				AL DEP	TH OF FILL
DRILLI	ING MET	HOD					DRILL RIG Mobile B-										CON		NT COMPANY C
			O TYPE	E (HOLE DIAM	ETER)		DRILLING R											D LOG	
-	HOLE IN	CLIN/	ATION				CASING TY	PE, DIA	METE	R, INS	TALLA	ATION	I DEPT	н			FIEL	-	REVIEWER
SAMPL	LER TYP						SPT HAMME Automatic											IMER EI	FICIENCY
,	,		ILL OF		N		DEPTH TO I	, -			BE 31'	FORE	DRILL	ING			AFTI	ER DRIL	
								ç	-					LA	BOR	ATOF	RY DA		
ELEVATION (ft)	DEPTH (feet)	Graphics		CLASSI	FICATION (Descrip	OF MATERI otion)	IALS	Sample Location	Sample Number	Recovery (%)	Blows per 6 in. [Blows per foot]	N ₆₀ (ASTM)	PP or TV, tsf	Water Content (%)	Liquid Limit	Plasticity Index	Fines, % <200	Other Lab Tests	REMARKS
			POOF dark o plastic	RLY GRADED gray; wet; ~90 city fines.	9 SAND with % poorly gra	<u>silt</u> (SP-SM); ded fine sanc	very loose; 1; ~10% low		6-1	3	WOH								08:10 AM
	4 - 5 - 6 - 7 -		As ab	ove except 85	5-90% sand; 	10-15% low p	plasticity fines		6-2	10	1 1 0 0								08:30 AM
	8 - 9 -		<u>SILTY</u> poorly	<u>′ SAND</u> (SM); / graded fine s	medium der and; ~35% l	nse; dark gray ow plasticity f	y; wet; ~65% fines.		6-3	50	6 8 10 16								08:52 AM
	10 - 11 - 12 -		As ab	ove except 85	5% sand; 15%	6 low plasticit	ty fines.	K	6-4	70	4 7 10 10			33.7			15.3		09:03 AM
	13 – 14 –		As ab	ove except lo	ose.				6-5	90	2 2 3 [5]	8							09:10 AM
	15 - 16 - 17 -		As ab	ove except m	edium dense	L.		K	6-6	70	3 8 12 15								09:25 AM
	18 -		As ab	ove except lo	ose.				6-7	100	2 2 6 [8]	12							09:45 AM
Ge				Borehole Lo Coordinates	s: Northing		linsville C 5.28 E	ontinue ounty asting ongitu	: <u>Co</u>	6631	5.72				L	OG		F BO B6	RING Sheet 1 of 2
engineer	75 i scientists i	linnoyato	01%	Survey Met Channel / R	hod: <u>N/A</u> liver Name /	Feature:	C Sacramento	oord. River	Syste	m: _1	NAD 1	983	_	Co	llins	ville-	Pittsb	ourg 23	0 kV Offshore

				_						LA	BORA	ATOR	Y DA	TA	
ELEVATION (ft)	DEPTH (feet)	Material Graphics	CLASSIFICATION OF MATERIALS (Description)	Sample Location	Sample Number	Recovery (%)	Blows per 6 in. [Blows per foot]	N ₆₀ (ASTM)	PP or TV, tsf	Water Content (%)	Liquid Limit	Plasticity Index	Fines, % <200	Other Lab Tests	REMARKS
	-20 - 21 -		As above except medium dense.	X	6-8	100	10 12 17 [29]	44							09:54 AM
	- 22 -		Boring terminated at 21.5 feet bgs.	<u>v </u>	N		[23]								
	- 23 -	-													
	- 24 -														
	25 -														
	- 26 -														
	27 -														
	28 -														
	29 -														
	30 -														
	31 - - 32 -														
	- 33 -	-													
	- 34 -														
	35 -														
	36 -														
	37 -	-													
	38 -														
	39 -														
	40 -														
	41 -	-													
	42 -														
	43 - -														
	44 - - - 45-														
	-+3-														
Ge		nte	Coordinates: Northing: <u>2208735.28</u> Latitude: <u>38.05286105 N</u> Latitude: <u>1208735.28</u>	ing	: <u>Con</u> : <u>616</u> : <u>de</u> : <u>1</u>	6315	5.72				L	OG		BO B6	RING
enginee		isultan sis i linnoya	lors	d. 9	Syster	n: N		983	\vdash	Co	llinsv	ville-F	Pittsh	oura 23(Sheet 2 of 2 kV Offshore
			Channel / River Name / Feature: Sacramento Riv	/er	2,000				-						

(Description)	
DRILLING METHOD Rotary Wash DRILL RIG MAKE AND MODEL Mobile B-80 aboard R/V Quin Delta CONSULTANT COM Geosyntec DRILL BIT SIZE AND TYPE (HOLE DIAMETER) 5 in DRILLING ROD TYPE AND DIAMETER N/A FIELD LOGGER J. Xia BOREHOLE INCLINATION N/A CASING TYPE, DIAMETER, INSTALLATION DEPTH N/A FIELD LOG REVIEW D. Umberg SAMPLER TYPE(S) SPT, Mod Cal, Shelby SPT HAMMER TYPE Automatic, 140 Ib/30 HAMMER EFFICIEN 92% BOREHOLE BACKFILL OR COMPLETION N/A DEPTH TO MUD LINE BEFORE DRILLING 40' Automatic, 140 Ib/30 WI (19) (19) (19) (19) (19) (19) (19) (19)	YANY
DRILL BIT SIZE AND TYPE (HOLE DIAMETER) 5 in DRILLING ROD TYPE AND DIAMETER N/A FIELD LOGGER J. Xia BOREHOLE INCLINATION N/A CASING TYPE, DIAMETER, INSTALLATION DEPTH N/A FIELD LOG REVIEW D. Umberg SAMPLER TYPE(5) SPT, MAO Cai, Shelby SPT HAMMER TYPE Adtomatic, 140 lb/30 BEFORE DRILLING 40' HAMMER EFFICIEN 92% BOREHOLE BACKFILL OR COMPLETION N/A DEPTH TO MUD LINE BEFORE DRILLING 40' AFTER DRILLING not measured (i) N/A I I IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	
BOREHOLE INCLINATION N/A CASING TYPE, DIAMETER, INSTALLATION DEPTH N/A FIELD LOG REVIEW D. Umberg SAMPLER TYPE(S) SPT, Mod Cal, Shelby SPT HAMMER TYPE Automatic, 140 lb/30 HAMMER EFFICIEN 92% BOREHOLE BACKFILL OR COMPLETION N/A DEPTH TO MUD LINE BEFORE DRILLING 40' AFTER DRILLING not measured 1 (1) UP V V Had BURCHOLE BACKFILL OR COMPLETION N/A CLASSIFICATION OF MATERIALS (Description) Up V V V V V V V V V V V V V V V V V V V	
SAMPLER TYPE(S) SPT, Mod Cal, Shelby SPT HAMMER TYPE Automatic, 140 lb/30 HAMMER EFFICIEN 92% BOREHOLE BACKFILL OR COMPLETION N/A DEPTH TO MUD LINE BEFORE DRILLING 40° AFTER DRILLING not measured 100 uig bad sworg 100 uig bad	R
BOREHOLE BACKFILL OR COMPLETION N/A DEPTH TO MUD LINE BEFORE DRILLING 40' AFTER DRILLING not measured (1) N/A (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Y
ELEVATION (ft) CLASSIFICATION OL WATERIALS CRAPTICALOL OL DEPTH (feet) CRAPTICALOL OL DEPTH (feet) CLASSIFICATION OL WATERIALS CONCEPT A Material CLASSIFICATION OL WATERIALS CONCEPT CLASSIFICATION OL WATERIALS CLASSIFICATION OL WATERI	
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	MARKS
	M; Rods eet into e
6 9 6 7-1 100 3 1100 11	
7 Image: Sandy Silt (ML); firm; greenish gray; wet; 70% nonplastic 5 09:50 / 8 - - - - - - - - 09:50 /	Μ
9 - 1 As above. 34.4 NV NP 70 TX-UU 7-3 90 7-3 90 10:10 /	M; 250 psi
$\begin{bmatrix} 10 \\ - \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ $	М
13 13 14	M
16 7-5 100 2 58.0 69 36 98.3 17 10 4 6 58.0 69 36 98.3	
18	M; 450 psi
20	
Borehole Location: Pittsburg-Collinsville Coordinates: County: Contra Costa/Solano Easting: LOG OF BORING Geosyntec Latitude: 38.04874317 N Longitude: 121.87929573 W B7	
Consultants engineers / actentiats / innovators Survey Method: N/A Coord. System: NAD 1983 Channel / River Name / Feature: Sacramento River	Seet 1 of 2

				_						LA	BORA	TOR	Y DA	TA	
ELEVATION (ft)	DEPTH (feet)	Material Graphics	CLASSIFICATION OF MATERIALS (Description)	Sample Location	Sample Number	Recovery (%)	Blows per 6 in. [Blows per foot]	N ₆₀ (ASTM)	PP or TV, tsf	Water Content (%)	Liquid Limit	Plasticity Index	Fines, % <200	Other Lab Tests	REMARKS
	-20-		As above.	∇			4								11:15 AM
	21 -			M	7-7	100	7 17 [24]	37							
	22 -		Boring terminated at 21.5 feet bgs.												
	- 23 -														
	- 24 -														
	- 25 -														
	- 26 -														
	- 27 -														
	- 28 -														
	- 29 -														
	- 30 -														
	- 31 -														
	- 32 -														
	- 33 -														
	- 34 -														
	- 35 -														
	- 36 -														
	- 37 -														
	- 38 -														
	- 39 -														
	- 40 -														
	- 41 -														
	42 -														
	43 -														
	44 -														
	45														
Ge	eosy	nte	Coordinates: Northing: <u>2207262.26</u> Latitude: <u>38.04874317 N</u> Long	ing	: <u>Con</u> : <u>616</u> de: 1	64504	14		_		L	OG		BO B7	RING Sheet 2 of 2
enginee	rs i scientis	ts i innoya	Survey Method: <u>N/A</u> Coor Channel / River Name / Feature: <u>Sacramento Riv</u>	d. S ver	Syster	n: <u>N</u>	IAD 1	983	-	Со	llins	/ille-F	Pittsb	ourg 230	kV Offshore

DATE ST			DATE COMPLETED 07/31/2024	GROUND ELEV	ATIO	ON		ELE	VATIO	on da	TUM			тот. 21.		TH OF BORING
DRILLING Gregg	G CO	NTR/		DRILLER'S NAM	ΛE			HEI N/	_PER'S	S NAM	E				AL DEP	TH OF FILL
DRILLING Rotary	G ME	тно		DRILL RIG MAK Mobile B-80				in De	lta					CON		
,			D TYPE (HOLE DIAMETER)	DRILLING ROD											D LOGO	
BOREHO N/A	DLE II	NCLIN	IATION	CASING TYPE,	DIA	METEI	r, INS	TALLA		DEPT	н			FIEL	-	REVIEWER
SAMPLE SPT, M				SPT HAMMER											MER EF	FICIENCY
				DEPTH TO MUE					FORE meas					AFTE	ER DRIL measu	
					c	Ļ				suieu		BOR	ATOR	RY DA		
ELEVATION (ft)	DEPTH (feet)	Material Graphics	CLASSIFICATION OF MATERIA (Description)		Sample Location	Sample Number	Recovery (%)	Blows per 6 in. [Blows per foot]	N ₆₀ (ASTM)	PP or TV, tsf	Water Content (%)	Liquid Limit	Plasticity Index	Fines, % <200	Other Lab Tests	REMARKS
	- 1 - 2 - - 3 - - 4 -		<u>SANDY SILT</u> (ML); stiff; dark gray; wet; ~70% fines; ~30% poorly graded fine sand.	low plasticity	X	8-1	90	4 8 5 [13]	20							17:13 PM
	5 - 6 - 7 - 8 -		<u>SILTY SAND</u> (SM); medium dense; gray; wet; graded fine sand; 14% nonplastic fines.	86% poorly		8-2	75	0 1 10 17			29.4			13.6		- 17:48 PM
	12 -		fine sand; 30% fines; 10% fine gravel); wet; ~60% p fine sand; 30% fines; 10% fine gravel. POORLY GRADED GRAVEL with sand (GP); gray with orange, black, and white (gravel); 75	dense; dark % subrounded		8-3	70	6 13 21 21								17:59 PM; Sand catcher broke
	14 -		As above except 77% gravel; 22% coarse sand	S.	K	8-4	50	22 32 31 39						0.4		18:13 PM; Sand catcher broke
	17 - 18 - 19 -															-
				(cont	inue	d)										
			Borehole Location: <u>Pittsburg-Collin</u> Coordinates: Northing: <u>2206170</u> .			<u>Cor</u>			Solan	<u>o</u>		L	OG	OF	BO	RING
Geo			C ^D Latitude: <u>38.045612</u>		-	de:			14 W	-				I	B8	Sheet 1 of 2
engineers ()		sultar	10PM	~		N		1A P. 4	000	\vdash	~	112	dile 1	D:#~!		
			Survey Method: <u>N/A</u> Channel / River Name / Feature: Sa			Syste	n: _^	NAU 1	983	-	CO	ninsv	viile-l	rittSD	urg 23	0 kV Offshore

																					LA	BORA	ATOR	Y DA	TA		
ELEVATION (ft)			Material Graphics		С	LASS		ATIOI (Desc			ERIA	LS		Sample Location	Samle Mumber		Recovery (%)	Blows per 6 in. [Blows per foot]	N ₆₀ (ASTM)	PD or TV 1ef	Water Content (%)	Liquid Limit	Plasticity Index	Fines, % <200	Other Lab Tests		REMARKS
	2		0000	As abo	ove.										8-	-5	50	11 14 15 [29]	44			39	19			18:4	42 PM
	2:	2-	/ ./	<u>Sandy</u> mediu Boring	LEAN m plas termii	CLAN ticity f	<u>Y</u> (CL ines; at 21.); stiff; ~15% .5 feet	; yello poor t bgs.	wish b ly grad	brown; ded fir	; moist ne sand	;; ~85% d.	<u>^</u>	<u> </u>			[29]				55	15				
	2	3 -		Depth	to mu	d line l	befor	e drilli	ng - 1	100'; at	fter dri	illing -	95.5'														
	2	+																									
		6 -																									
	2	7 -																									
	2	8 -																									
	2	+																									
	3	+																									
	3	2 -																									
	3	3 -																									
	3	+																									
		6-																									
	3	7-																									
	3	8 -																									
	3	+																									
	4	+																									
	4	2 -																									
	4	3 -																									
	4	4 - 5																									
E CP	-	-																									
GEOS LEVEE TEMPLATE CP	Geos			cÞ			es: I	North	ing:	2206	6170.6	nsville 68 21 N	Ea	sting	g: (516	1213	osta/ 3.87 9066		_		L	OG		= BC B8		
GEOS LEV		onsi	ultant	ts on	Surve	ey Met nel / F	thod: River	: <u>N//</u>	4 e / Fe	eature	<u>a: S</u> 2	acrame	Co	ord. River	Sys	ten	n: <u>N</u>	NAD ·	1983		Со	llinsv	ville-l	Pittsk	ourg 2		Sheet 2 of 2 Offshore

	START 2/2024		DATE COMPLETED 07/22/2024	GROUND EL	EVATI	ON		EL	EVATI	ION DA	TUM			TOT		TH OF BORING
DRILL		ONTR/	ACTOR	DRILLER'S N N/A	AME				LPER /A	'S NAM	IE			-	AL DEP	TH OF FILL
DRILL	ING MI ary Wa	THO)	DRILL RIG N Mobile B-8										CON		NT COMPANY C
	,		ID TYPE (HOLE DIAMETER)	DRILLING R											D LOG	
-	HOLE	NCLIN	IATION	CASING TYP	PE, DIA	METE	r, INS	TALL	ATION	I DEPT	Ή			FIEL		REVIEWER
SAMP	LER T) Shelby	SPT HAMME Automatic											MER E	FFICIENCY
			FILL OR COMPLETION	DEPTH TO N	, -			BE 24		DRILL	ING			AFTI	ER DRIL meas	
	£				Ę	5			<u> </u>		LA	BOR	ATOF			
ELEVATION (ft)	DEPTH (feet)	Material Graphics	CLASSIFICATION OF MATERI (Description)	ALS	Sample Location	Sample Number	Recovery (%)	Blows per 6 in. [Blows per foot]	N ₆₀ (ASTM)	PP or TV, tsf	Water Content (%)	Liquid Limit	Plasticity Index	Fines, % <200	Other Lab Tests	REMARKS
	-0 - 1 -		SANDY SILT (ML); hard; black (10YR 2/1); m silt; 20-30% sand.			9-1	100	11 20 34								09:25 AM
	2 -		SILTY SAND (SM); very dense; 60-70% sand nonplastic fines.	1; 30-40%												-
	3 - - 4 -		No recovery.		X	9-2	0	7 13 18								10:15 AM; No recovery
	5 -		<u>SILT</u> (ML); very stiff; dark gray (10YR 4/1); m nonplastic fines; 11% fine sand; low dry stren pen=2.5 tsf.	oist; 89% gth, pocket		9-3	85	3 8 14 17		2.5P	32.9			89.3		10:30 AM
	7 - - 8 - - 9 -		<u>SILTY SAND</u> (SM); medium dense; dark gray 50-60% sand; 40-50% medium plasticity fines mottling.	- — — — — — — / (10YR 4/1); s; orange		9-4	100	3 11 12 [23]	35							10:46 AM
	-		SILTY SAND (SM); dense; olive gray; wet; 74 graded sand; trace gravel; 25% nonplastic fin	- — — — — — I% poorly ies.		9-5	75	8 12 17 23			26.0			25		11:10 AM
	12 - - 13 - - 14 -															
	15 - - 16 - - - 17 -		LEAN CLAY with sand (CL); very stiff; browni (10YR 6/8); moist; 75% low plasticity fines; 25	sh yellow 5% sand.		9-6	100	9 13 14 16		3.0- 3.5P	22.1	29	11	75.5		11:30 AM
	- 18 - - 19 - - - 20															
				(0	ontinue	ed)										
Ge	eosy	nte		insville Co	ounty: asting ongitu	<u>Co</u>	59388	3.95				L	OG		5 BO B9	RING Sheet 1 of 4
enginee	ers i scientis	as i linnoya	Survey Method: <u>N/A</u> Channel / River Name / Feature: <u>S</u>	Co Sacramento	oord. S River	Syste	m: <u></u>	NAD '	1983	_	Co	llins	ville-	Pittsb	ourg 23	0 kV Offshore

				c	<u>ب</u>					LA	BOR/	ATOR	RY DA	TA	
ELEVATION (ft)	DEPTH (feet)	Material Graphics	CLASSIFICATION OF MATERIALS (Description)	Sample Location	Sample Number	Recovery (%)	Blows per 6 in. [Blows per foot]	N ₆₀ (ASTM)	PP or TV, tsf	Water Content (%)	Liquid Limit	Plasticity Index	Fines, % <200	Other Lab Tests	REMARKS
	-20-	//	As above except very hard.				14 22								12:10 PM
	21 - - 22 - -		As above except very dark grayish brown (10YR 3/2).		9-7	95	26 31		>4.5P						_
	23 - 24 - 25 - 26 - 27 -		POORLY GRADED SAND with silt (SP-SM); very dense; dark gray; moist to wet; 91% sand; 9% low plasticity fines; trace gravel.		9-8	80				24.4			9.4		13:10 PM; 700 psi
	28 - 29 - 30 - 31 - 32 -		<u>WELL-GRADED SAND</u> (SW); loose to medium dense; dark gray (10YR 4/1); wet; ~90% sand; 5% gravel; 5% nonplastic fines. <u>SANDY SILT</u> (ML); medium dense; olive gray; wet; 56% nonplastic fines; 44% sand.	л \	9-9	85	6 9 11 22			25.9			55.7		13:40 PM
	- 33 - 34 - - 35 -		<u>SILT</u> (ML); hard; olive; moist; 92% nonplastic fines; 8%	_			10								13:50 PM
	36 - - 37 -		sand.		9-10	100	15 22 29				44	5	92.1		
	37 - 38 - 39 - 40 -		<u>SILTY SAND</u> (SM); dense; very dark gray (10YR 3/1); moist 60% sand; 40% nonplastic to low plasticity fines.	_			10								14:20 PM
	- 41 - 42 - 43 - 43 - 44 -		<u>POORLY GRADED SAND</u> (SP); dense to very dense; dark gray (10YR 4/1); 87% sand; 10% gravel; 3% low plasticity fines.		9-11	100	10 15 22 29			19.2			3.5		14:20 PM
5	-45-	• • • • • • • •	/ -	tine		1				1				1	1
		nte	Borehole Location: <u>Pittsburg-Collinsville</u> Coordinates: Northing: <u>2204939.73</u> Latitude: <u>38.04215745 N</u> Lor	sting	<u>Cor</u> : <u>615</u> de: _1	9388	8.95		_		L	OG		F BO B9	RING Sheet 2 of 4
engineer	s í scientis	ts i linnoyan	Survey Method: <u>N/A</u> Co Channel / River Name / Feature: <u>Sacramento R</u>		Syster	n: _N	IAD 1	983	_	Co	llinsv	/ille-l	Pittsb	ourg 23) kV Offshore

a				c	5					LA	BOR/	ATOR	Y DA	TA	
ELEVATION (ft)	DEPTH (feet)	Material Graphics	CLASSIFICATION OF MATERIALS (Description)	Sample Location	Sample Number	Recovery (%)	Blows per 6 in. [Blows per foot]	N ₆₀ (ASTM)	PP or TV, tsf	Water Content (%)	Liquid Limit	Plasticity Index	Fines, % <200	Other Lab Tests	REMARKS
	-45-		As above except dense; 90% sand; 10% low plasticity fines; orange pieces.	\mathbb{N}	9-12	60	20 39	140							14:50 PM
	46 -		<u>SILTY SAND</u> (SM); very dense; dark gray (10YR 4/1); wet; 80% sand; 20% low plasticity fines; trace gravel.	\square	0.12		52 [91]	110							-
	47 - - 48 -			-											
	- 49 -	6600 0 0 0 0													
	- 50 -		WELL-GRADED GRAVEL (GM): very dense: dark grav				10								45-00 DM
	- 51 -		WELL-GRADED GRAVEL (GM); very dense; dark gray (10YR 4/1); wet; ~95% subangular-subrounded gravel (max 2" diameter); ~5% coarse sand.	M	9-13	65	10 40 52								15:20 PM
	52 -		WELL-GRADED GRAVEL with sand (GW); very dense; dark gray (10YR 4/1); 79% subangular-subrounded gravel (max 2" diameter); 21% coarse sand; trace silt.	Λ	0 10	00	54						0.6		
			<u>SILTY SAND with gravel</u> (SM); very dense; dark gray (10YR 4/1); wet; 50% well-graded sand; 30% gravel; 20% nonplastic fines.												
	54 -	ه _ه ه ه _ه ه													
	- 55 -	 	WELL-GRADED SAND with gravel (SW); very dense; dark gray (10YR 4/1); wet; 80% sand; 20% gravel.				[>50]								15:50 PM; Blows
	- 56		gray (10YR 4/1); wet; 80% sand; 20% gravel. <u>POORLY GRADED SAND with silt</u> (SP-SM); very dense; gray; 88% sand; 12% nonplastic fines; trace gravel.	1X	9-14	80		>50							per 6-in. not recorded
	- 57 -			\vdash											-
	- 58 -														
	- - - -														
	- 60 -		No recovery.				11								16:10 PM; Sand
	- 61 -			N	9-15	0	12 11 12								catcher broke, no recovery
	62 -			\square											-
	- 63 -														
	- 64 -														
	65 -														
	-		As above.		9-16	40					NV	NP	12		16:40 PM; 800 psi
	66 -														-
	67 -														
	68 -														
	69 -														
<u> </u>	70	^. _													
			(cont Borehole Location: _Pittsburg-Collinsville Cou		ed) Con	tra C	costa/	Solar	10			<u></u>	~		
Ge	eosy	mte	Coordinates: Northing: 2204939.73 East	ing	: <u>615</u> de: 1	9388	3.95				Ľ(UG		- BO B9	RING
	con	sultan	ts						- -						Sheet 3 of 4
enginee	75 í scientis	as i linnoyan	Survey Method: <u>N/A</u> Coo Channel / River Name / Feature: Sacramento Riv	rd.	Syster	n: <u></u>	NAD 1	983	-	Co	llins	ville-F	Pittsb	ourg 23	0 kV Offshore
			Shannen river name / realure Saciamento Ri	vei											

										LA	BOR	ATOR	Y DA	TA	
ELEVATION (ft)	DEPTH (feet)	Material Graphics	CLASSIFICATION OF MATERIALS (Description)	Sample Location	Sample Number	Recovery (%)	Blows per 6 in. [Blows per foot]	N ₆₀ (ASTM)	PP or TV, tsf	Water Content (%)	Liquid Limit	Plasticity Index	Fines, % <200	Other Lab Tests	REMARKS
	-70-	ه <u>م</u> ه م م	WELL-GRADED SAND with silt and gravel (SW-SM); very dense; dark gray (10YR 4/1); wet; 60-65% sand; 30% subangular gravel (max 2" diameter); 5-10% nonplastic	V	9-17	50	29 40			8.5			4.4		17:00 PM
	-		tines.	Λ	9-17	50	75								
		000	dark gray (10YR 4/1) with some orange and white pieces; wet: 52% grayel (max 2" diameter): 44% well-graded sand:												
	73 -		4% nonplastic fines.												
	74 -														
	75 -	000													
	- 76 -														
	- 77 -														
	- 78 -														
	79 -														
	80 -	•••													
	81 -		<u>POORLY GRADED GRAVEL</u> (GP); very dense; dark gray with white and black pieces; wet; ~95% subangular gravel (max 2" diameter); ~5% coarse sand.	M	9-18	40	6 19 32	78							17:20 PM
	-	6.	Boring terminated at 81.5 feet bgs.	/			[51]								
	82 -														
	83 -														
	84 -	-													
	85 -														
	86 -	-													
	87 -														
	88 -	1													
	89 -														
	90 -	-													
	91 -														
	92 -														
	- 93														
	94 -														
	-95-														
								<u>.</u>							
C		make	Coordinates: Northing: 2204939.73 East	ing	<u>Con</u> 615	9388	8.95				L	OG			RING
Ge	con	/nte		jitu	de: <u>1</u>	21.8	96937	(13 V	<u>v</u>					B9	Sheet 4 of 4
enginee	ers (scientis	ats i linnoya	Survey Method: <u>N/A</u> Coor Channel / River Name / Feature: <u>Sacramento Riv</u>		Syster	n: _N	IAD 1	983	_	Co	llins	/ille-l	Pittsk	ourg 230	0 kV Offshore

	STARTED 3/2024	DATE COMPLETED 07/23/2024	GROUND ELE	VATI	ON		ELI	EVATI	ON DA	TUM			TOT		H of Boring
DRILL	ING CONT		DRILLER'S NA	ME			HE N		S NAN	IE				AL DEPT	'H of fill
DRILL	ING METH	OD	DRILL RIG MA Mobile B-80										CON		
		AND TYPE (HOLE DIAMETER)	DRILLING RO											D LOGG	
-	HOLE INC	LINATION	CASING TYPE	, DIA	METER	r, INS	TALLA		DEPT	н			FIEL		REVIEWER
SAMP		(S)	SPT HAMMER										HAN	IMER EF	FICIENCY
BORE	, Mod Ca HOLE BAC	KFILL OR COMPLETION	Automatic, DEPTH TO MU					FORE	DRILL	ING				ER DRIL	
N/A					<u> </u>		48'			LA	BOR	ATOF	noi RY DA	t measu TA	rea
ELEVATION (ft)	DEPTH (feet) Material	CLASSIFICATION OF MA (Description)	ATERIALS	Sample Location	Sample Number	Recovery (%)	Blows per 6 in. [Blows per foot]	N ₆₀ (ASTM)	PP or TV, tsf	Water Content (%)	Liquid Limit	Plasticity Index	Fines, % <200	Other Lab Tests	REMARKS
	-0 - 1 -	As above except dark gray (10YR 4/1).			10-1	75	6 8 13 [21]	32							10:10 AM
	2 - - 3 - - 4 -	As above except very stiff.			10-2	95				19.9	21	1	51.1	TX-UU DS-CD	10:40 AM; 750 psi
	5 	POORLY GRADED SAND with silt (SP gray; wet; 93% fine sand; 7% nonplasti black, and white pieces of sand.	2-SM); very dense; c fines; orange,		10-3	65	21 30 29 29			17.8			7.2		11:00 AM
	8	As above except medium dense.			10-4	100	2 4 9 [13]	20							11:20 AM
	10 – 11 –	As above except dense.			10-5	75	8 8 16 24								11:55 AM
	12 - 13 - 14 - 15 -						2								12:25 PM
	16 - 17 - 18 - 19 -	POORLY GRADED SAND with silt and loose; gray; wet; 60% sand; 30% fine g fines; orange, black, and white pieces of	ravel; 10% nonplastic		10-6	80	2 5 [7]	11							
 															
Ge	eosyn consul		g-Collinsville Cou 05673.68 Eas	ting	ed) : <u>Cor</u> : <u>61</u> : : de: _	59592	2.22				L	OG		BO 310	RING Sheet 1 of 2
enginee	rs i scientists i lit	Survey Method: <u>N/A</u> Channel / River Name / Featu			Syste	n: _N	NAD 1	983	_	Co	llins	ville-	Pittsb	ourg 230) kV Offshore

(ft)	et)			lion	ber	(9	.⊑ Ţ		sf				RY DA		
ELEVATION (ft)	DEPTH (feet)	Material Graphics	CLASSIFICATION OF MATERIALS (Description)	Sample Location	Sample Number	Recovery (%)	Blows per 6 in. [Blows per foot]	N ₆₀ (ASTM)	PP or TV, tsf	Water Content (%)	Liquid Limit	Plasticity Index	Fines, % <200	Other Lab Tests	REMARKS
	-20-		As above except very dense.				28			-				0	13:35 PM
	21 -			N	10-7	90	34 34 30			11.4			6.1		
	- 22 -			\square											_
	-														
	23 -			-											
	24 -														
	25 -		POORLY GRADED SAND with gravel (SP); dense; dark gray with white and black gravel; wet; 80% well-graded				6								13:50 PM
	26 -		sand; 20% subrounded gravel (max 1" diameter).	X	10-8	60	10 21 [31]	48							
	- 27 -		As above except dark gray with light gray, white, and red pieces; 85% well-graded sand; 10% subrounded gravel (max 1" diameter); 5% nonplastic fines.	<u> </u>											-
	- 28 -														
	-			1											
	29 -														
	30 -		POORLY GRADED SAND (SP); very dense; gray with light gray, white, and red pieces; wet; 84% sand; 13% subrounded gravel (max 1/4" diameter); 3% low plasticity				9 16								14:10 PM
	31 -		subrounded gravel (max 1/4" diameter); 3% low plasticity fines.	N	10-9	80	24 23			17.0			3.2		
	32 -														_
	- 33 -														
	- 34														
	-														
	35 -														
	36 -														
	37 -														
	- 38 -														
	- 39 -														
	-														
	40 -	<u>, , , , , , , , , , , , , , , , , , , </u>	As above except max 1/2" diameter gravel.				17 13								14:30 PM
	41 -	000	POORLY GRADED GRAVEL with sand (GP); very dense; dark gray; wet; 80% subangular to subrounded gravel (max 2" diameter); 20% sand.	N	10-10	60	50								
	42 -	0.02	Boring terminated at 42 feet bgs.												
	43 -														
	- 44 -														
	-														
	-45-														
Ge	eosy	nte	Coordinates: Northing: 2205673.68 Eas	ting	<u>Con</u> : <u>615</u> de: 1	i 9592	2.22				L	OG		BO B10	RING
	-	sultar	ts						+						Sheet 2 of
sodination	a cientis	- 1 (1110ya	Survey Method: <u>N/A</u> Coc Channel / River Name / Feature: Sacramento R		Syster	n: _1	NAD 1	983	-	Co	llins	ville-	Pittsb	ourg 23	0 kV Offshore

DATE	START)/2024		DATE COMPLETED 07/30/2024	GROUND ELEV	ΆΤΙΟ	ON		ELE	VATI	on da	TUM			TOT		TH OF BORING
DRILLI		ONTR	ACTOR	DRILLER'S NAI	ИE			HEI N/		S NAM	E				AL DEP	TH OF FILL
DRILLI		THO	D	DRILL RIG MAP Mobile B-80										CON		
	<u> </u>		ID TYPE (HOLE DIAMETER)	DRILLING ROD											D LOGG	
-	HOLE I	NCLI	NATION	CASING TYPE, N/A	DIA	METER	r, INS	TALLA		DEPT	Н			FIEL	-	REVIEWER
SAMPL) Shelby	SPT HAMMER											IMER EF	FICIENCY
,			FILL OR COMPLETION	DEPTH TO MU				BEI 5.8		DRILL	ING				ER DRIL	LING
					c	L					LA	BORA	ATOR	Y DA		
ELEVATION (ft)	DEPTH (feet)	Material Graphics	CLASSIFICATION OF MATERIA (Description)	ALS	Sample Location	Sample Number	Recovery (%)	Blows per 6 in. [Blows per foot]	N ₆₀ (ASTM)	PP or TV, tsf	Water Content (%)	Liquid Limit	Plasticity Index	Fines, % <200	Other Lab Tests	REMARKS
	0 1 - 2 - 3 - 4 - - -															Sample rods sunk to 7 feet bgs, hard to roll because soil sticks
	5 - 6 - 7 - 8 - 9 -		SILT (MH); very soft; dark gray; wet; ~91% hig silty fines; 3% poorly graded fine sand; 6% fine organics.	yh plasticity e-grained	X	11-1	100	WOH								08:26 AM
	- 10 - 11 -		As above.		X	11-2	100	WOH								08:50 AM
	12 - - 13 - - 14 -		As above.			11-3	100				89.6	112	61	97.1	DS-CD	08:58 AM; 100 psi
	- 15 - - 16 - - 17 -		As above except rootlets present.			11-4	100	1 0 0 0								- 09:20 AM
	-20-			(cont	inue	d)										
			Borehole Location: <u>Pittsburg-Collin</u> Coordinates: Northing: <u>2215290</u> .			<u>Cor</u> 617			Solar	10		L	OG	OF	BO	RING
Ge	eosy		Latitude: <u>38.07132</u>			de:			701 V	V		_	-		311	
engineer	CON:	sulta	ators	_		_				\vdash						Sheet 1 of 5
			Survey Method: <u>N/A</u> Channel / River Name / Feature: S	Coo acramento Riv	r d. S /er	Syster	n: <u></u>	IAD 1	983	-	Co	Ilins	ville-l	Pittsb	ourg 23	0 kV Offshore

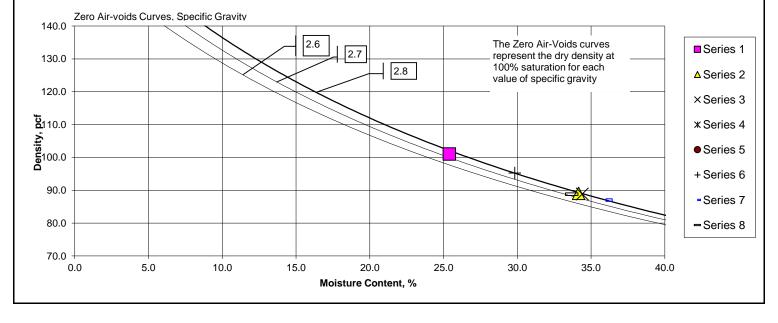
				_						LA	BORA	ATOR	RY DA	TA	
ELEVATION (ft)	DEPTH (feet)	Material Graphics	CLASSIFICATION OF MATERIALS (Description)	Sample Location	Sample Number	Recovery (%)	Blows per 6 in. [Blows per foot]	N ₆₀ (ASTM)	PP or TV, tsf	Water Content (%)	Liquid Limit	Plasticity Index	Fines, % <200	Other Lab Tests	REMARKS
	20		As above.				1								09:30 AM
	21 -			Ν	11-5	100	0 0								
	-			Ν			0								
	22 -			\vdash											-
	23 -														
	24 -														
	25 -												07		09:40 AM
	-		As above.										8.7		6.7 feet to water to
	26 -		POORLY GRADED SAND with silt (SP-SM): very loose to		11-6	100									mud line at 09:41 AM
	27 -		POORLY GRADED SAND with silt (SP-SM); very loose to loose; gray; wet; 91% poorly graded fine sand; 9% nonplastic to low plasticity fines.												
	28 -														
	29 -		+	-											
	- 30 -														
	30 - 31 -		SILTY SAND (SM); loose; gray; ~55% sand; ~45% nonplastic to low plasticity fines.	V	11-7	40	0 1 2								09:58 AM
	32 -			\square			3								-
	- 33 -														
	- 34 -														
	- 35 -		As above except medium dense; ~70% sand; 30% nonplastic fines.				5								10:13 AM
	- 36		nonplastic fines.	X	11-8	100	10 14 [24]	37							
	37 -														
	38 -														
	39 -														
	40 -		As above.				5								10:21 AM
	41 -			N	11-9	80	7 7 7								
	42 -														-
	43 -														
	-														
	44 -														
	45-														
			(con	tinue	ed)										
					Cor			Solar	0		14	00			RING
C	200	mto	Coordinates: Northing: <u>2215290.13</u> Latitude: <u>38.0713232 N</u> Lon		: <u>617</u> de: _1			701 1/			L'	00		- БО 311	
Ut	con	sulta		ցուս	นช	21.0	52011		<u>v</u>				C		Sheet 2 of 5
enginee	rs i scientis		Survey Method: N/A Coo	rd. S	Syster	n: _N	IAD 1	983		Co	ollins	ville-l	Pittsb	ourg 230	0 kV Offshore
			Channel / River Name / Feature: Sacramento Ri	ver					_						

				c	5					LA	BOR/	ATOR	RY DA	TA	
ELEVATION (ft)	DEPTH (feet)	Material Graphics	CLASSIFICATION OF MATERIALS (Description)	Sample Location	Sample Number	Recovery (%)	Blows per 6 in. [Blows per foot]	N ₆₀ (ASTM)	PP or TV, tsf	Water Content (%)	Liquid Limit	Plasticity Index	Fines, % <200	Other Lab Tests	REMARKS
	-45-		As above.	M	11-10	80	9 12 10	34							10:23 AM; Drilling mud in sampler
	46 - - 47 -			\square			[22]								
	47 - - 48 -														
	-40 - 49 -														
	- 51 -		<u>SILT with organics</u> (MH); medium stiff; dark gray; wet; 90% medium plasticity silty fines; 10% poorly graded fine sand; 10-15% organics.	M	11-11	100	0 0 3		0.5- 0.75P						11:01 AM
	- 52 -						4		0.75						
	- 53 -														
	- 54 -														
	- 55 -		As above.												11:13 AM
	- 56 -		As above except black; moist; brown clay interlayered in		11-12	100			0.75- 1.0P	126.9	107	23	92.7	ΤΧ-υυ	
	57 -		sample.						1.01						
	5 8 -														
	59 -														
	60 - -		As above except stiff.				0								11:25 AM
	61 - -			Ň	11-13	100	6 6		1.0- 1.5P						
	62 –														
	63 - -			-											
	64 -														
	65 - - 66 -		<u>CLAY</u> (CL); stiff; moist; 88% low to medium plasticity clayey fines; 12% poorly graded fine sand; 2% organics.						10	28.7	43	20	88	DS-CU	11:48 AM; 500 psi
	- 60 -				11-14	100			1.0- 1.5P						
	- 68 -														
	- 69 -														
	-70-														
			(com Borehole Location: _Pittsburg-Collinsville Cou		ed) Con	tra C	Costa/	Solar	10						
Ge	eosy	nte	Coordinates: Northing: 2215290.13 East	ing	: <u>617</u> de: <u>1</u>	7986	6.40				L	OG		F BO 311	RING
		sultan	ts m	-					_						Sheet 3 of 5
enginee			Survey Method: <u>N/A</u> Coo Channel / River Name / Feature: <u>Sacramento Riv</u>	rd. : ver	Syster	n: _N	NAD 1	983	_	Co	llins	ville-l	Pittsk	ourg 230) kV Offshore

				c	5					LA	BORA	ATOR	RY DA	ТА	
ELEVATION (ft)	DEPTH (feet)	Material Graphics	CLASSIFICATION OF MATERIALS (Description)	Sample Location	Sample Number	Recovery (%)	Blows per 6 in. [Blows per foot]	N ₆₀ (ASTM)	PP or TV, tsf	Water Content (%)	Liquid Limit	Plasticity Index	Fines, % <200	Other Lab Tests	REMARKS
			FAT CLAY with sand (CH); very stiff; dark gray; moist; 84% medium plasticity fines; 16% poorly graded fine sand.	V			8 13 25			31.8	51	25	83.5		11:55 AM; Too hard to roll
	- 71 - 72 -		<u>SILTY SAND</u> (SM); very dense; dark gray; wet; 77% poorly graded fine sand; 21% nonplastic fines; 2% gravel.		11-15	100	25 33		3.5P	17.7			21.1		_
	- 73 - - 74 -														
			POORLY GRADED SAND with silt (SP-SM); very dense; dark gray; wet; 80% sand; 10% gravel; 10% nonplastic fines.	X	11-16	95	17 21 29 [50]	77							12:02 PM
	- 77 - 78 -														-
	79 - - 80 - -		As above. <u>CLAY</u> (CL); very hard; yellowish-brown; wet; 95% medium plasticity fines; 5% poorly graded fine sand.		11-17	90	8 15 20	54							12:14 PM; Too hard to roll
	81 - - 82 - - 83 -		plasticity fines; 5% poorly graded fine sand.				[35]								
	- 84 - - 85 - - 86 -														
	- 87 - 88 - - 89 -														
	- 90 - - 91 -		LEAN CLAYEY GRAVEL with sand (GC); very dense; olive brown; wet; 47% medium plasticity fines; 30% gravel; 23% poorly graded fine sand; claystone consistency, gray mottling.		11-18	65	22 36 46 37		>4.5P	16.6	32	14	47.3		13:08 PM
	92 - - 93 - - 94 -														
	95-	<u>~~~</u> ~~>)	(con	tinue	ed)	I	l							I	I
0			Coordinates: Northing: 2215290.13 East	ting	: <u>Con</u> : <u>617</u>	7986	6.40				L	OG			RING
Ge		nte		gitu	de: _1	21.8	32877	701 V	<u>v</u>				E	311	Sheet 4 of 5
enginee	rs i scientis	ts i linnoyat	Survey Method: <u>N/A</u> Coo Channel / River Name / Feature: <u>Sacramento Ri</u>		Syster	n: _N	NAD 1	983	-	Co	llins	/ille-l	Pittsb	ourg 230	0 kV Offshore

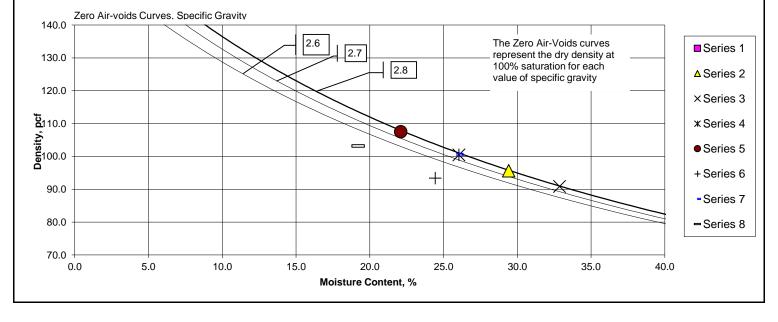
				_						LA	BOR	ATOR	Y DA	TA	
ELEVATION (ft)	DEPTH (feet)	Material Graphics	CLASSIFICATION OF MATERIALS (Description)	Sample Location	Sample Number	Recovery (%)	Blows per 6 in. [Blows per foot]	N ₆₀ (ASTM)	PP or TV, tsf	Water Content (%)	Liquid Limit	Plasticity Index	Fines, % <200	Other Lab Tests	REMARKS
	95 96 - 97 - 97 - 98 -														
	99 - - 100- - 101-		<u>CLAY</u> (CL); very hard; brownish yellow with gray mottling spots; wet; ~95% medium plasticity fines; ~5% poorly graded fine sand.	X	11-19	90	9 13 21	52							13:21 PM; Too hard to roll
	101		Boring terminated at 101.5 feet bgs.	/ \			[34]								
	103-														
	104-														
	105-														
	106-														
	107- - 108-														
	100														
	110-														
	111-														
	112-														
	113-	-													
	114-														
	115- - 116-														
	117-														
	118-														
	119-														
	-120-														
Ge		/nte	Coordinates: Northing: <u>2215290.13</u> Latitude: <u>38.0713232 N</u> Long	ing	: <u>Con</u> : <u>617</u> : de: 1	7986	6.40		_		L	OG		BO 311	RING Sheet 5 of 5
enginee	rs í sciemb	sıs i linnoya	Survey Method: <u>N/A</u> Coo Channel / River Name / Feature: Sacramento Riv	rd. ver	Syster	n: <u></u>	NAD 1	983	-	Co	llins	ville-l	Pittsb	ourg 230) kV Offshore

DATE S				DATE C 08/02/	OMPLETED	GROUND ELEV	'ATI	ON		ELI	EVATI	on da	TUM			TOT 21.		TH OF BORING
	NG CO	ONTE	RACTOF			DRILLER'S NAI	ИE				LPER'	S NAM	IE				AL DEP	TH OF FILL
DRILLII Rotar	NG ME	ETHO	D			DRILL RIG MAN Mobile B-80										CON	ISULTA	
DRILL I				PE (HOLE DIAMET	ſER)	DRILLING ROD										FIEL	D LOGO	
5 in BOREH N/A	IOLE	INCL	INATIO	N		N/A CASING TYPE, N/A	DIA	METE	R, INS	TALL	ATION	DEPT	н				D LOG I	REVIEWER
SAMPL						SPT HAMMER										HAM		9 FICIENCY
				R COMPLETION		Automatic, 1 DEPTH TO MUI						DRILL	ING				ER DRIL	
N/A										85			LA	BOR	ATOF	not RY DA	t meası TA	ured
ELEVATION (ft)	DEPTH (feet)	Material	Glapilics	CLASSIF	ICATION OF MATERI (Description)	ALS	Sample Location	Sample Number	Recovery (%)	Blows per 6 in. [Blows per foot]	N ₆₀ (ASTM)	PP or TV, tsf	Water Content (%)	-	Plasticity Index	Fines, % <200	Other Lab Tests	REMARKS
	• - 1 -		non-	plastic to low pla 1	very soft; dark gray; wel sticity silt; ~25% poorly o	graded fine	Ν	12-1	100	0 1 0	2							11:40 PM
	-		<u>SILT</u> grad	<u>Y SAND</u> (SM); v led fine sand; ~30	ery loose; dark gray; we 0% nonplastic silt.	t; ~70% poorly	\vdash			[1]								_
	2 - 3 - 4 -																	
	5 -		poor	ly graded fine sa						10 6								12:05 PM; Rootlets present in 12-2A
	6 -		SILT grad	<u>Y SAND</u> (SM); n led fine sand; 32°	nedium dense; gray; wet % nonplastic fines; trace	; 68% poorly organics.	Ň	12-2	80	8 5			32.6			32.1		and 12-2B
	7 -						\vdash											_
	8 - 9 - 10 - 11 - 11 - 12 -		As a	lbove.			X	12-3	75	5 8 8 10								- 12:25 PM
	- 13 - - 14 - - 15 - - - 16 -		<u>CLA</u> fines	<u>Y with sand</u> (CL) s; 20% poorly gra	; stiff; gray; wet; 80% me ded fine sand.	edium plasticity		12-4	95	2 8 11 14			37.6			79.9		- 12:50 PM
	17 - - - 18 - - - 19 - -																	
	-20-	<u>v</u>				(cont	inue	ed)										
					cation: <u>Pittsburg-Coll</u> Northing: <u>2206351</u>				ntra C 61562	Costa/ 2.71	Solar	0		L	OG			RING
Ge	_	nt	ec		Latitude: <u>38.04612</u>	2 <u>312 N</u> Long	gitu	de: _	121.8	8946	25 W	-				E	312	Sheet 1 of 2
engineers	i scientis			Survey Metho	od: N/A	Coo	rd. :	Syste	m: 1	NAD 1	1983		Co	llins	ville-	Pittsb	ourg 23	0 kV Offshore
					ver Name / Feature:			-	_			_					-	

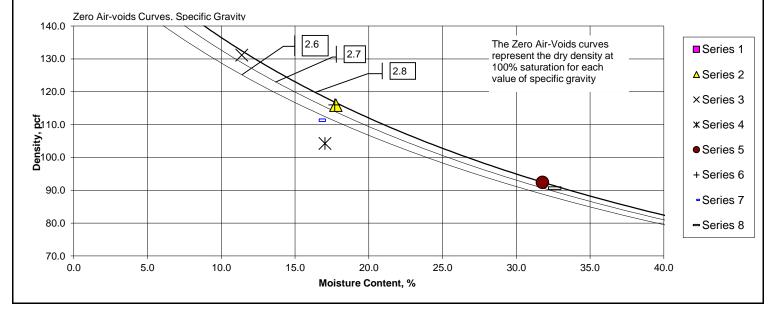

Г													LA	BORA	ATOR	YDA	ТА	
	ELEVATION (ft)		Graphics	CLASSI	FICATION OF (Descriptio	MATERIALS		Sample Location	Recovery (%)	Blows per 6 in. [Blows per foot]	N ₆₀ (ASTM)	PP or TV, tsf	Water Content (%)	Liquid Limit	Plasticity Index	Fines, % <200	Other Lab Tests	REMARKS
		-20- 21 -	As	above except roc	otlets present a	t middle of sample	er.	12.	5 100	2 9 12 [21]	32							13:10 PM
		22 -	Boi	ing terminated at	21.5 feet bgs.		,					1						
		23 - - 24 -																
		25 -																
		26 -																
		27 - - 28 -																
		29 -																
		30 - - 31 -																
		32 -																
		33 -																
		34 - - 35 -																
		36 -																
		37 - - 38 -																
		30 - 39 -																
		40 -																
		41 - - 42 -																
		43 -																
		44 - 																
Щ Ц																		
GEOS LEVEE TEMPLATE CP	Ge	consu	Itants	Coordinates	: Northing:	burg-Collinsville 2206351.60 38.04612312 N	Eastin	ig: _6	16156	2.71		_		L	OG		BO 812	RING Sheet 2 of 2
GEOSI	engineers	s (icientins i	innovators	Survey Meth Channel / Ri	od: <u>N/A</u> ver Name / F	eature: <u>Sacram</u>	_ Coord	. Sys	em: _	NAD [·]	1983	_	Co	llins	ville-F	Pittsb	urg 230) kV Offshore

APPENDIX B Laboratory Test Results

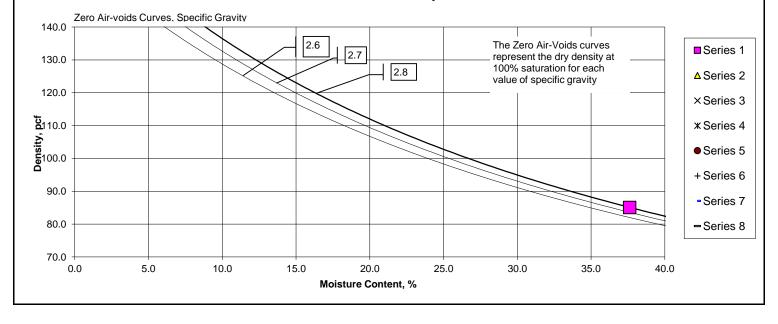
CTL Job No:	461-383a			Project No.	WG3444	By:	RU	
Client:	Geosyntec	Consultants		Date:	08/23/24			
Project Name:	Collinsville-	Pittsburg 23	0KV	Remarks:				
Boring:	B01	B02	B02	B03	B03	B04	B05	B06
Sample:	1-5D	2-3D	2-5B	3-3B	3-4	4-3C	5-3C	6-4C
Depth, ft:	11-11.5	6.5-7	11-11.5	5.5-6.0	7.5-10(Tip-3")	6-6.5	6-6.5	11-11.5
Visual	Gray Silty	Dark Gray	Dark Gray	Gray	Gray	Gray	Gray Silty	Gray Silty
Description:	SAND	SILT w/	Sandy	Sandy	Sandy	Poorly	SAND	SAND
		Sand	SILT	CLAY	SILT w/	Graded		
					organics	SAND		
Actual G _s								
Assumed G _s	2.80	2.80	2.80	2.80	2.80	2.80	2.80	2.80
Moisture, %	25.4	34.2	34.4	55.2	65.0	29.8	36.0	33.7
Wet Unit wt, pcf	126.7	119.4	119.4	106.3	101.7	123.6	118.3	118.7
Dry Unit wt, pcf	101.0	89.0	88.9	68.5	61.7	95.2	87.0	88.8
Dry Bulk Dens.pb, (g/cc)	1.62	1.43	1.42	1.10	0.99	1.52	1.39	1.42
Saturation, %	97.3	99.3	99.6	99.6	99.2	99.9	100.0	97.4
Total Porosity, %	42.2	49.1	49.2	60.8	64.7	45.5	50.2	49.2
Volumetric Water Cont, Ow, %	41.1	48.7	49.0	60.6	64.2	45.5	50.2	47.9
Volumetric Air Cont., Oa,%	1.1	0.3	0.2	0.3	0.5	0.0	0.0	1.3
Void Ratio	0.73	0.96	0.97	1.55	1.83	0.84	1.01	0.97
Series	1	2	3	4	5	6	7	8


Note: All reported parameters are from the as-received sample condition unless otherwise noted. If an assumed specific gravity (Gs) was used then the saturation, porosities, and void ratio should be considered approximate.

CTL Job No:	461-383b			Project No.	WG3444	By:	RU	
Client:	Geosyntec	Consultants		Date:	08/23/24			
Project Name:	Collinsville-	Pittsburg 23	0KV	Remarks:				
Boring:	B07	B08	B09	B09	B09	B09	B09	B09
Sample:	7-5B	8-2B	9-3C	9-5D	9-6B	9-8	9-9C	9-11B
Depth, ft:	15.5-16	6	6-6.5	11.5-12	15.5-16	25-27.5	31-31.5	40.5-41
Visual	Gray Fat	Gray Silty	Gray SILT	Olive Gray	Olive	Gray	Olive Gray	Gray
Description:	CLAY	SAND		Silty SAND	Brown	Poorly	Sandy	Poorly
					Lean	Graded	CLAY	Graded
					CLAY w/	SAND w/		SAND
					Sand	Silt		
Actual G _s								
Assumed G _s	2.80	2.80	2.80	2.80	2.80	2.80	2.80	2.80
Moisture, %	58.0	29.4	32.9	26.0	22.1	24.4	25.9	19.2
Wet Unit wt, pcf	104.3	123.7	120.7	126.6	131.3	116.2	126.6	123.0
Dry Unit wt, pcf	66.0	95.6	90.8	100.4	107.5	93.4	100.6	103.2
Dry Bulk Dens.pb, (g/cc)	1.06	1.53	1.46	1.61	1.72	1.50	1.61	1.65
Saturation, %	98.5	99.5	99.6	98.4	98.9	78.4	98.3	77.5
Total Porosity, %	62.2	45.3	48.0	42.6	38.5	46.6	42.5	41.0
Volumetric Water Cont, Ow, %	61.3	45.1	47.8	41.9	38.1	36.6	41.7	31.8
Volumetric Air Cont., Өа,%	0.9	0.2	0.2	0.7	0.4	10.0	0.7	9.2
Void Ratio	1.65	0.83	0.92	0.74	0.63	0.87	0.74	0.69
Series	1	2	3	4	5	6	7	8

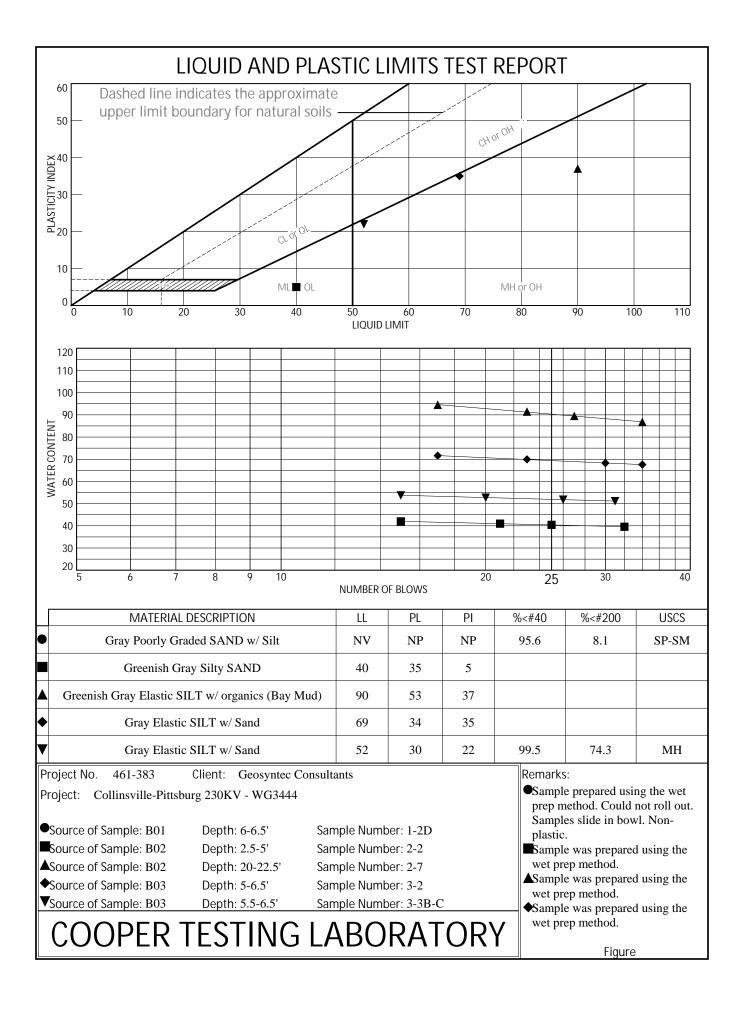

Note: All reported parameters are from the as-received sample condition unless otherwise noted. If an assumed specific gravity (Gs) was used then the saturation, porosities, and void ratio should be considered approximate.

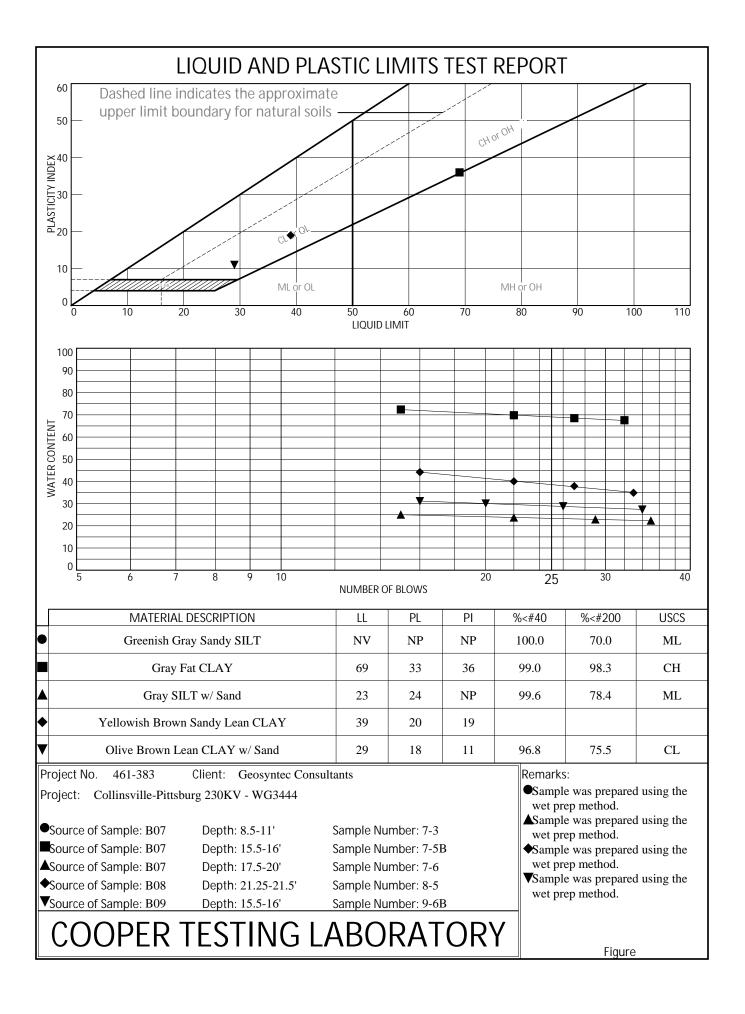
CTL Job No:	461-383c			Project No.	WG3444	By:	RU		
Client:		Consultants		Date:	08/23/24				
Project Name:	Collinsville-	Pittsburg 23	0KV	Remarks:	B09 @ 70-71' - sample disturbed; m/c only.				
Boring:	B09	B10	B10	B10	B-11	B-11	B-11	B-12	
Sample:	9-17C	10-3C	10-7B	10-9C	11-15A	11-15D	11-18C	12-2C	
Depth, ft:	70-71	6-6.5	20.5-21	31-31.5	70-70.5	71.5-72	91-91.5	6-6.5	
Visual	Gray Silty	Gray	Gray	Gray	Gray Fat	Gray Silty	Olive Brown	Gray Silty	
Description:	GRAVEL	Poorly	Poorly	Poorly	CLAY w/	SAND	Lean	SAND	
	w/ Sand	Graded	Graded	Graded	Sand		Clayey		
		SAND w/	SAND w/	SAND			GRAVEL w/		
		Silt	Silt &				Sand		
			Gravel						
Actual G _s									
Assumed G _s		2.80	2.80	2.80	2.80	2.80	2.80	2.80	
Moisture, %	8.5	17.8	11.4	17.0	31.8	17.7	16.6	32.6	
Wet Unit wt, pcf		136.5	146.1	122.0	121.8	136.5	129.8	120.2	
Dry Unit wt, pcf		115.9	131.1	104.2	92.4	116.0	111.3	90.6	
Dry Bulk Dens.pb, (g/cc)		1.86	2.10	1.67	1.48	1.86	1.78	1.45	
Saturation, %		97.8	95.8	70.4	99.8	97.6	81.6	98.3	
Total Porosity, %		33.7	25.0	40.4	47.1	33.7	36.3	48.1	
Volumetric Water Cont, Ow, %		33.0	23.9	28.4	47.0	32.9	29.7	47.4	
Volumetric Air Cont., Өа,%		0.7	1.1	11.9	0.1	0.8	6.7	0.8	
Void Ratio		0.51	0.33	0.68	0.89	0.51	0.57	0.93	
Series	1	2	3	4	5	6	7	8	

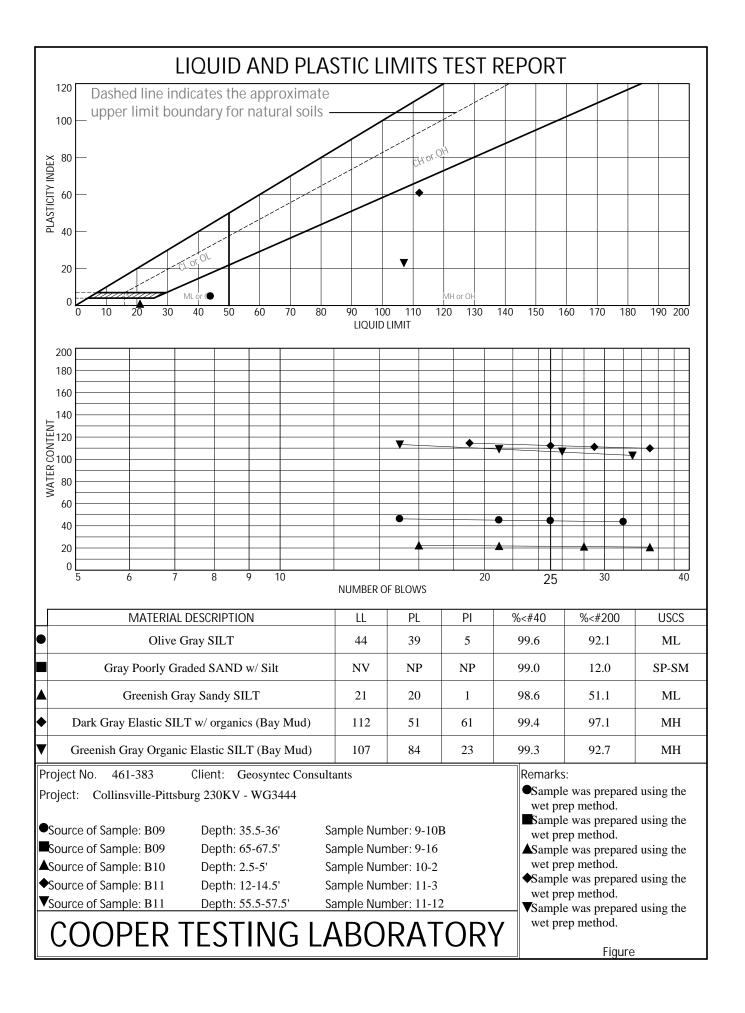

Note: All reported parameters are from the as-received sample condition unless otherwise noted. If an assumed specific gravity (Gs) was used then the saturation, porosities, and void ratio should be considered approximate.

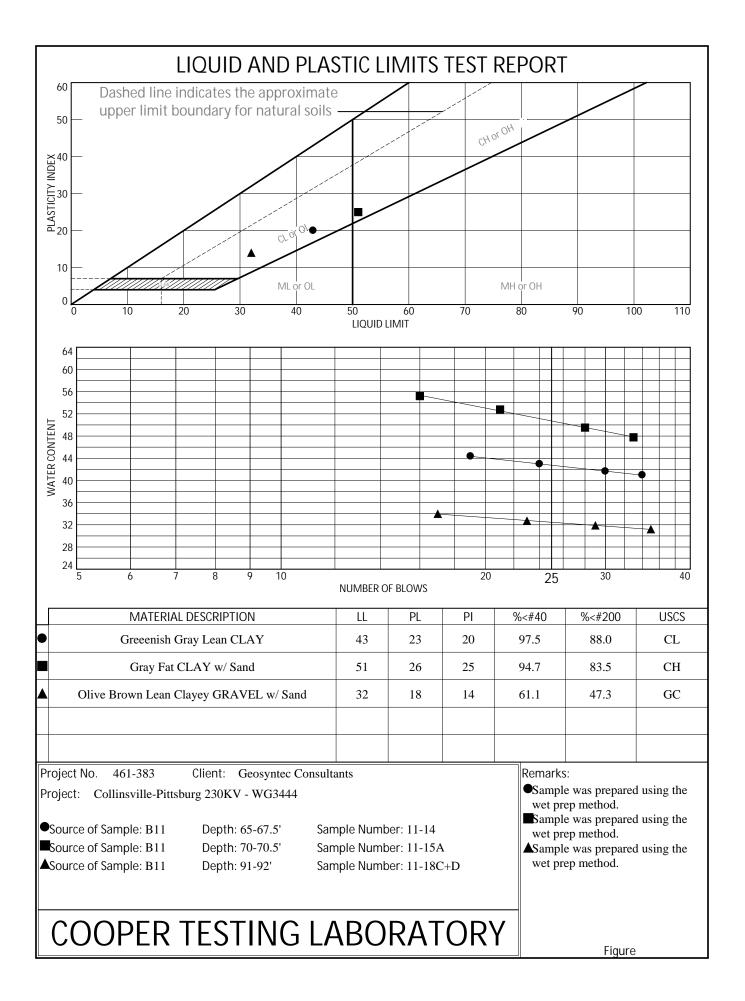
C)((Q)	ŀ)]			ŀ	R		
TES	T	I	N	G	L	A	В	0	R	A	T	0	R	Y	

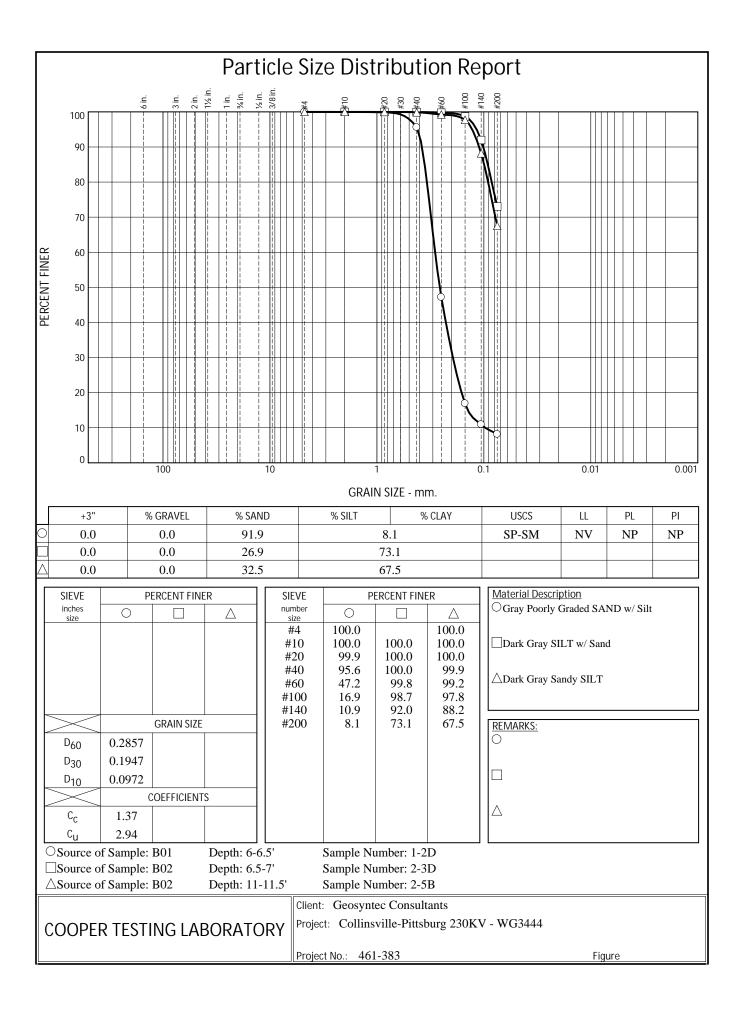
CTL Job No:	461-383d		_	Project No.	WG3444	By:	RU	_
Client:	Geosyntec Consultants			Date:	08/23/24			
Project Name:	Collinsville-Pittsburg 230KV			Remarks:				
Boring:	B12							
Sample:	12-4B							
Depth, ft:	15.5-16							
Visual	Gray							
Description:	CLAY w/							
	Sand							
Actual G _s								
Assumed G _s	2.80							
Moisture, %	37.6							
Wet Unit wt, pcf	117.0							
Dry Unit wt, pcf	85.0							
Dry Bulk Dens.pb, (g/cc)	1.36							
Saturation, %	99.8							
Total Porosity, %	51.4							
Volumetric Water Cont, Ow, %	51.2							
Volumetric Air Cont., Oa,%	0.1							
Void Ratio	1.06							
Series	1	2	3	4	5	6	7	8

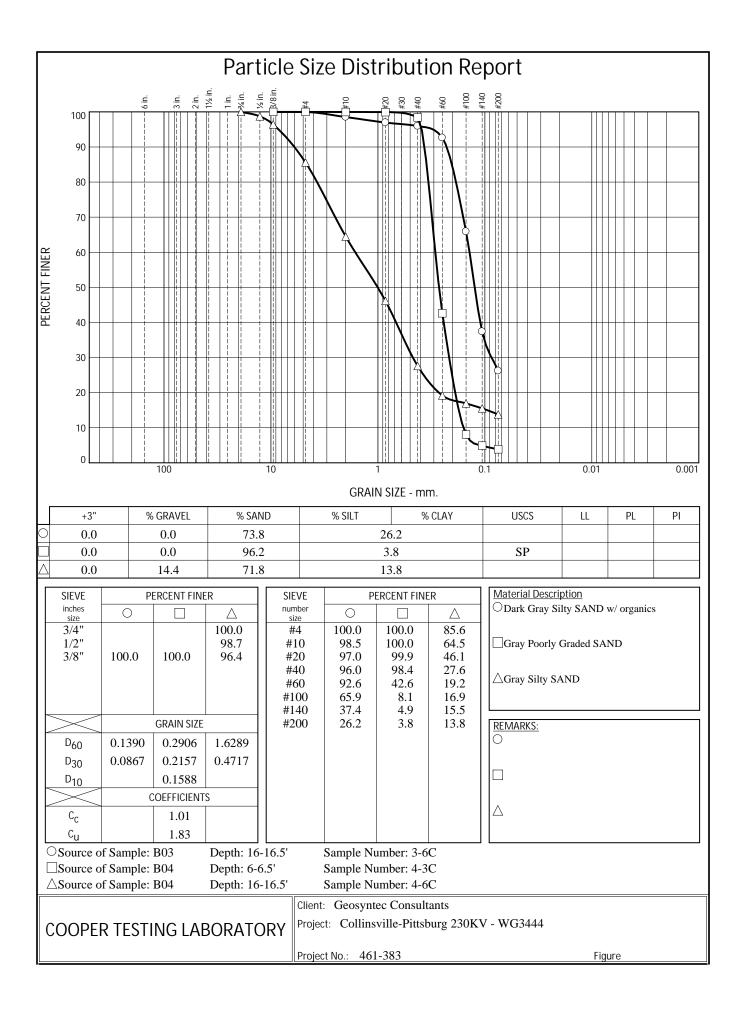

Note: All reported parameters are from the as-received sample condition unless otherwise noted. If an assumed specific gravity (Gs) was used then the saturation, porosities, and void ratio should be considered approximate.

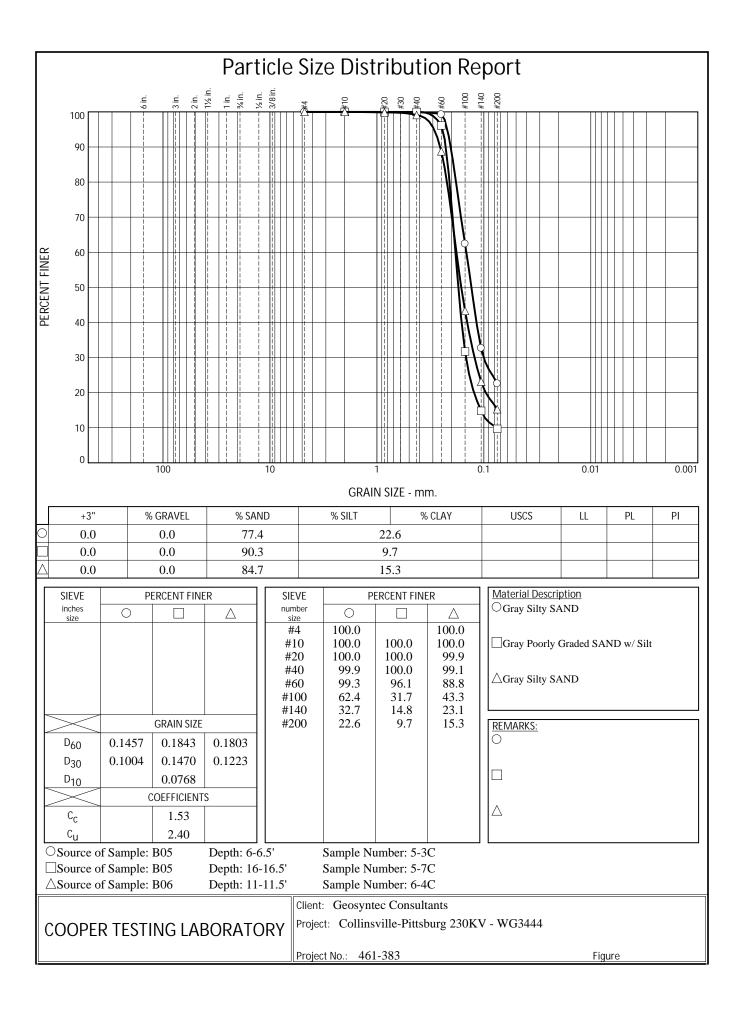


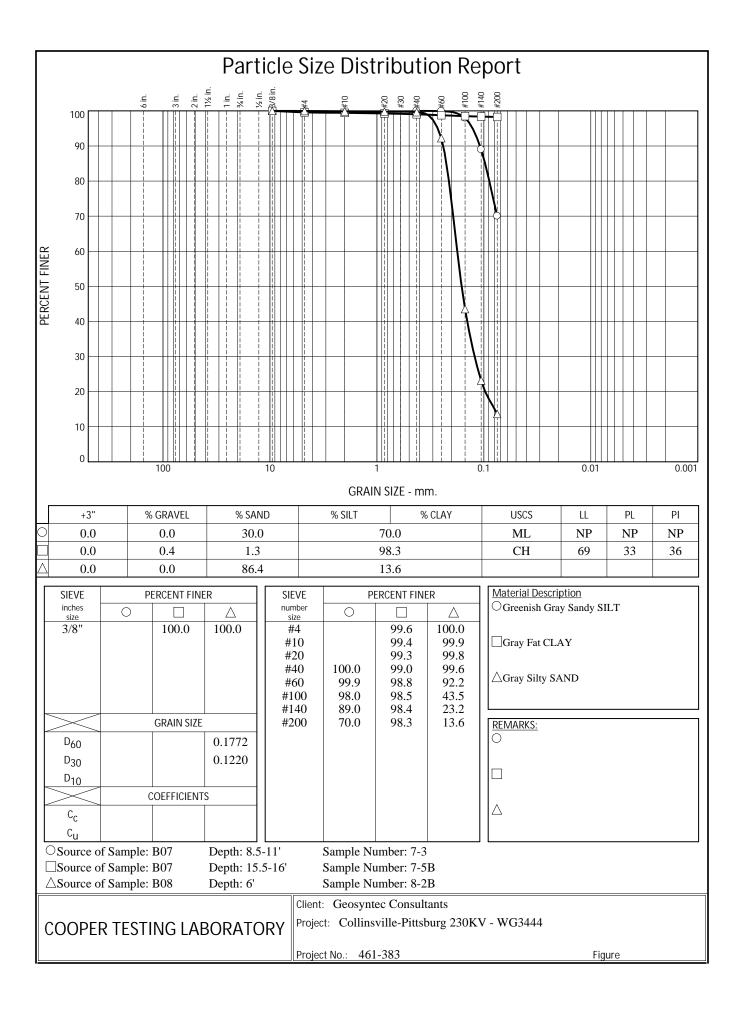

TESTING LABORATORY			Organic Content Test ASTM D 2974-20 (Method A - 440 °C)							
CTL Number: Client Name: 0	461-383a Geosyntec Cons			Project Name: oject Number:			Date: By:	8/26/2024 RU		
Boring		B02	B03	B03	B03	B04	B11	B11		
Sample		2-7	3-4	3-6C	3-7	4-6C	11-3	11-12		
Depth (ft)		20-22.5	7.5-10	16-16.5	20-21.5	16-16.5	12-14.5	55.5-57.5		
Visual Description	Dark Gray SILT w/ Sand	Greenish Gray Elastic SILT w/ organics (Bay Mud)	Gray Sandy SILT w/ organics	Dark Gray Silty SAND w/ organics	Black Organic CLAY w/ Sand	Gray Silty SAND	Dark Gray Elastic SILT w organics (Bay Mud)	Greenish Gray Organi Elastic SILT (Bay Mud)		
Dish Number										
Dish weight (g)		75.80	80.21	63.10	73.31	74.34	81.78	67.88		
Soil, Org, Dish & H ₂ O (g)		179.72	221.60	182.78	180.49	251.45	190.51	183.60		
Oven Dry wt (110°C) (g)		134.85	165.91	144.45	123.54	230.36	139.12	118.89		
Furnace Dry wt. (440°C) (g)		130.56	158.48	140.19	114.53	229.53	135.83	111.93		
Moisture Content (%)	32.0	76.0	65.0	47.1	113.4	13.5	89.6	126.9		
Ash Content (%)	97.5	92.7	91.3	94.8	82.1	99.5	94.3	86.4		
Organic Material (%)	2.5	7.3	8.7	5.2	17.9	0.5	5.7	13.6		
	ilable. CTL devel	oped the following	g guidelines to fil	I this gap:	ent of a sample in	the description	when the wet/dry	liquid limit data		

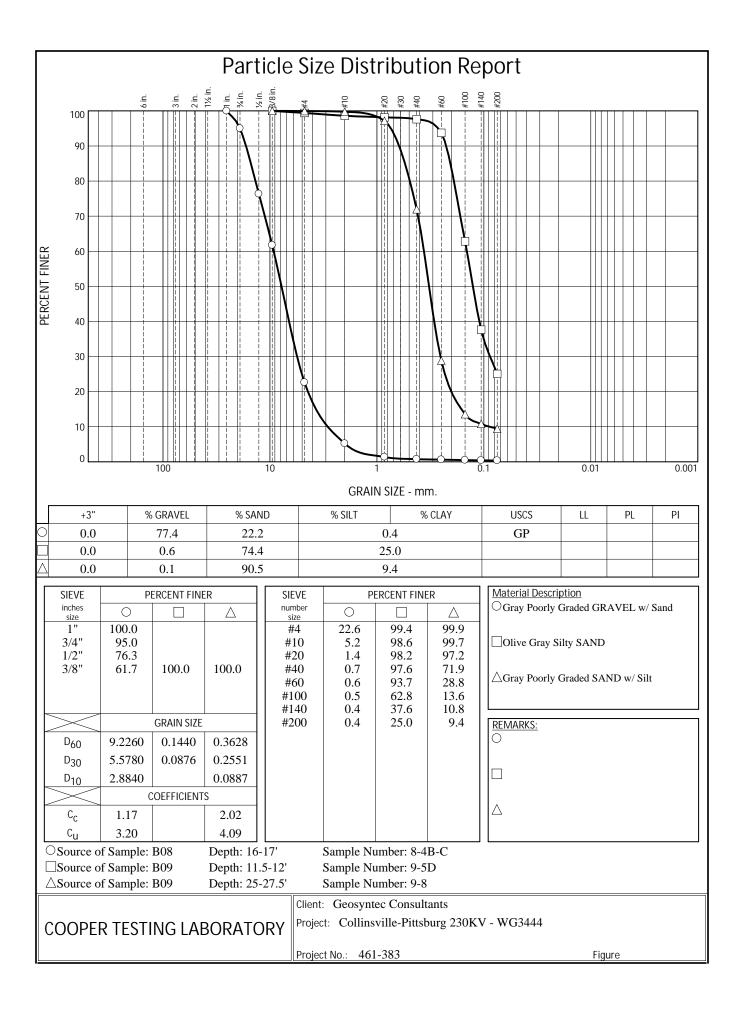

5-15%: The soil is considered as inorganic and is classified, as per ASTM 2487, with "with organics" included in the description. 15-50%: The soil is considered as organic and is described, per ASTM 2487. > 50%: The soil is described as "Peat".

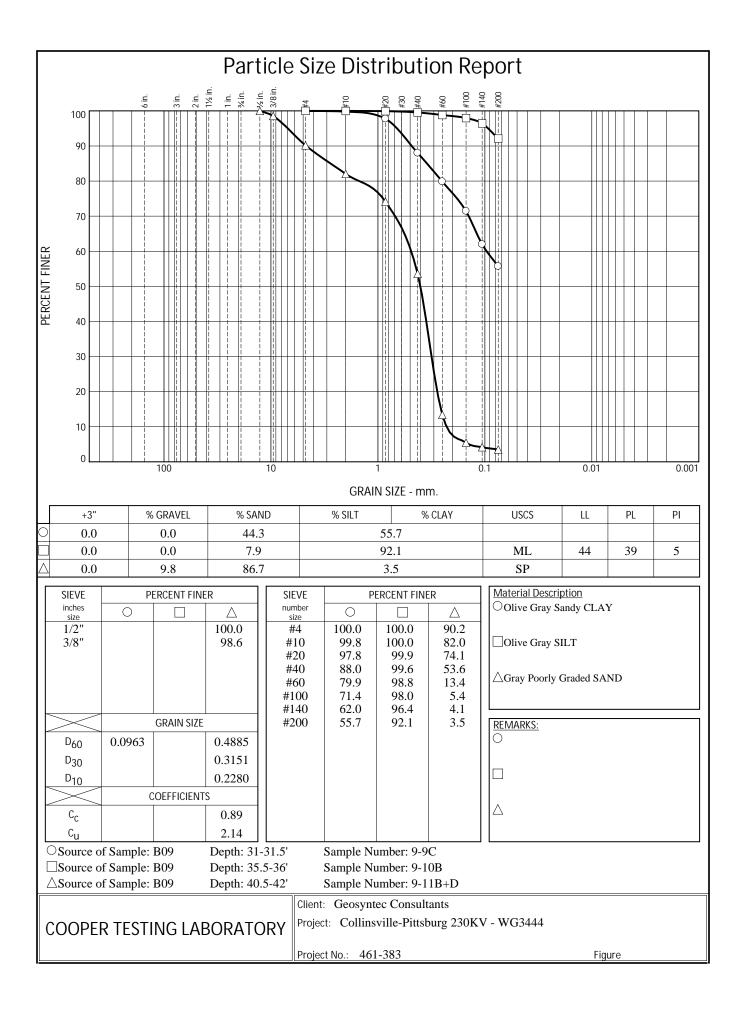

TESTING LABORA			Organic Content Test ASTM D 2974-20 (Method A - 440 °C)							
CTL Number: Client Name:	461-383b Geosyntec Cons		Project Name: Project Number:	Collinsville-Pittsburg 230KV WG3444	Date: By:	8/26/2024 RU				
Boring	B11	B12								
Sample	11-14	12-2C								
Depth (ft)	65-67.5	6-6.5								
Visual Description	Greenish Gray Lean CLAY	Gray Silty SAND								
Dish Number										
Dish weight (g)	83.28	75.77								
Soil, Org, Dish & H ₂ O (g)	198.09	219.49								
Oven Dry wt (110°C) (g)	172.47	185.39								
Furnace Dry wt. (440°C) (g)	170.45	183.67								
Moisture Content (%)	28.7	31.1								
Ash Content (%)	97.7	98.4								
Organic Material (%)	2.3	1.6								
Note: is not avai 0-5%: The organics are e	lable. CTL devel either not mentio ered as inorganic ered as organic a	oped the following ned or mentioned and is classified,	, as per ASTM 2487, with "with org			iquid limit data				

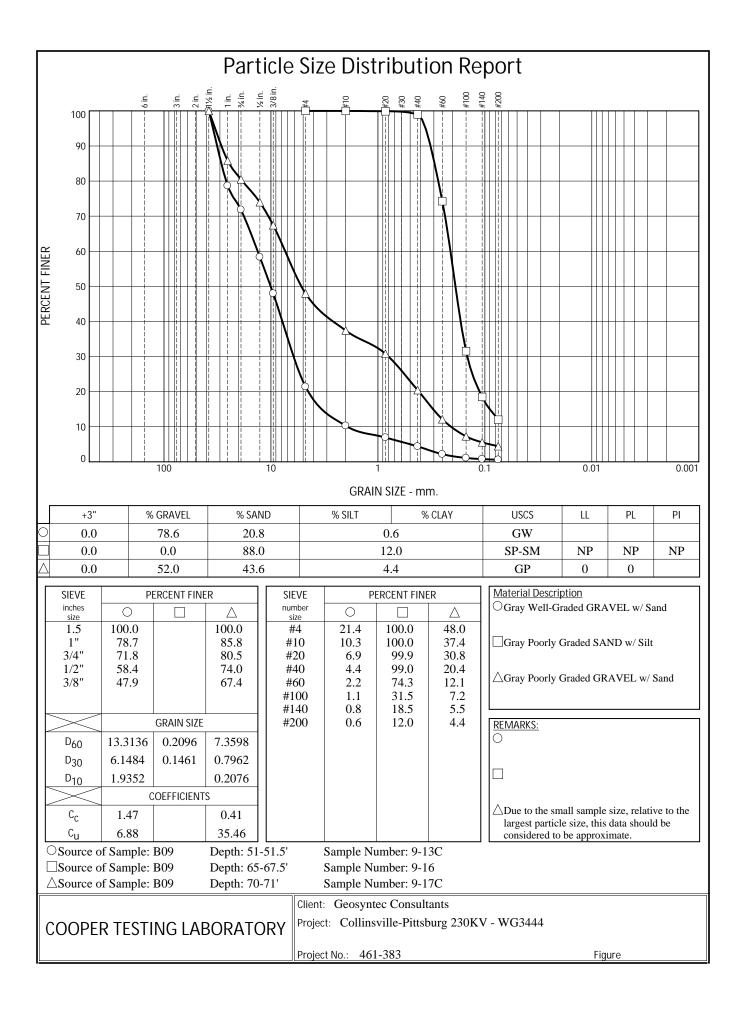


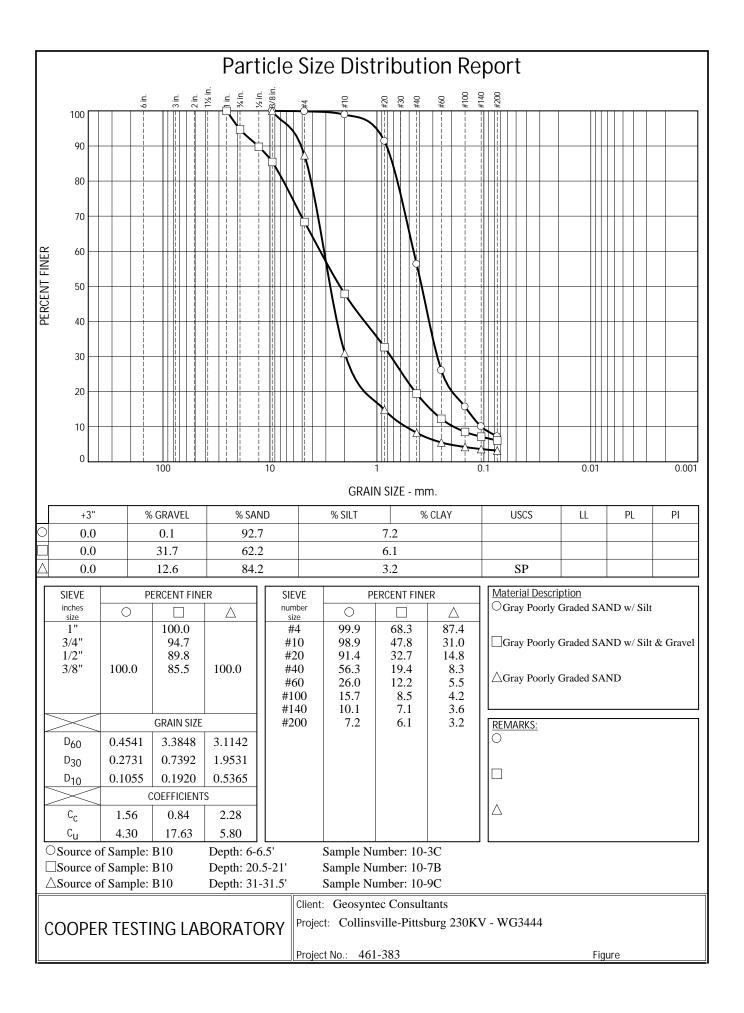


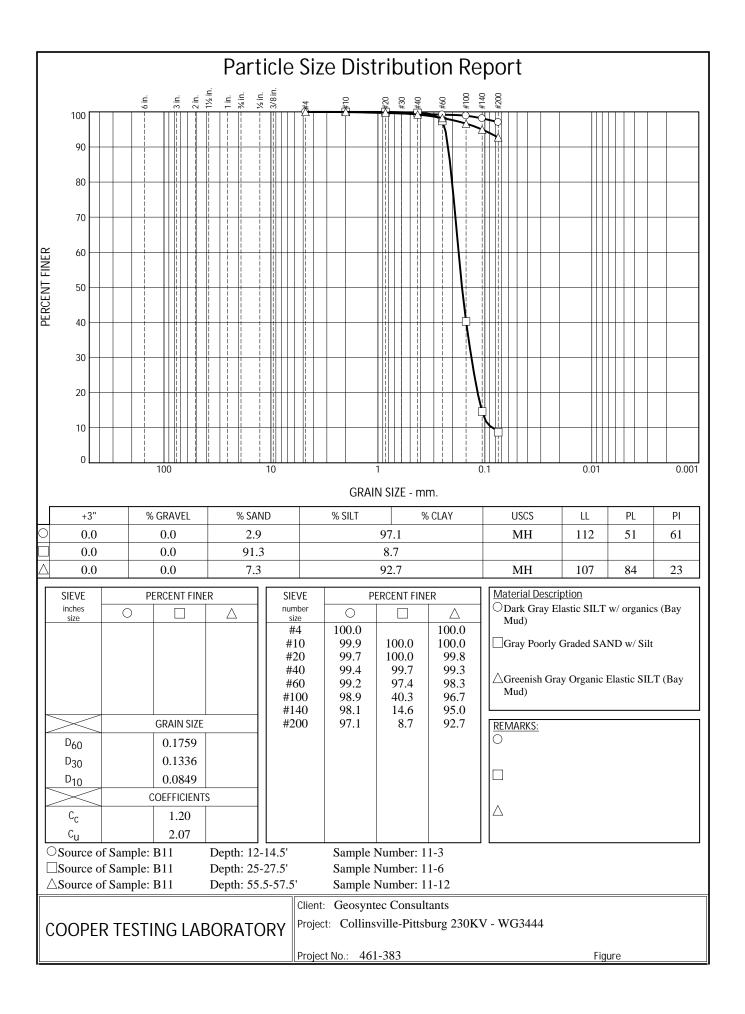


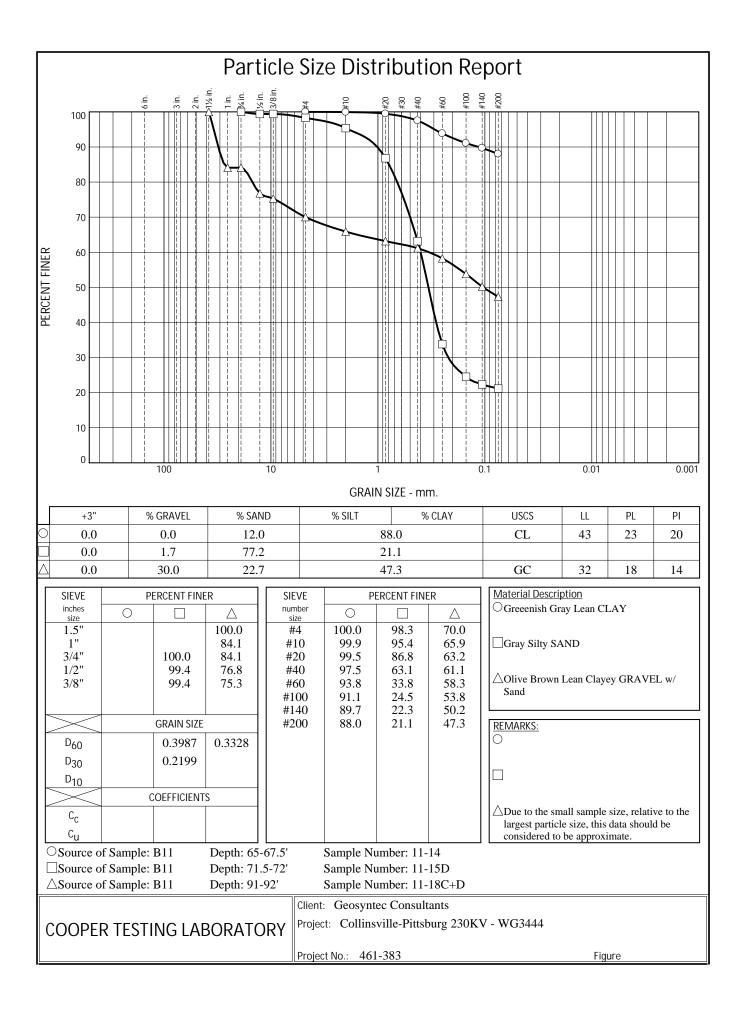


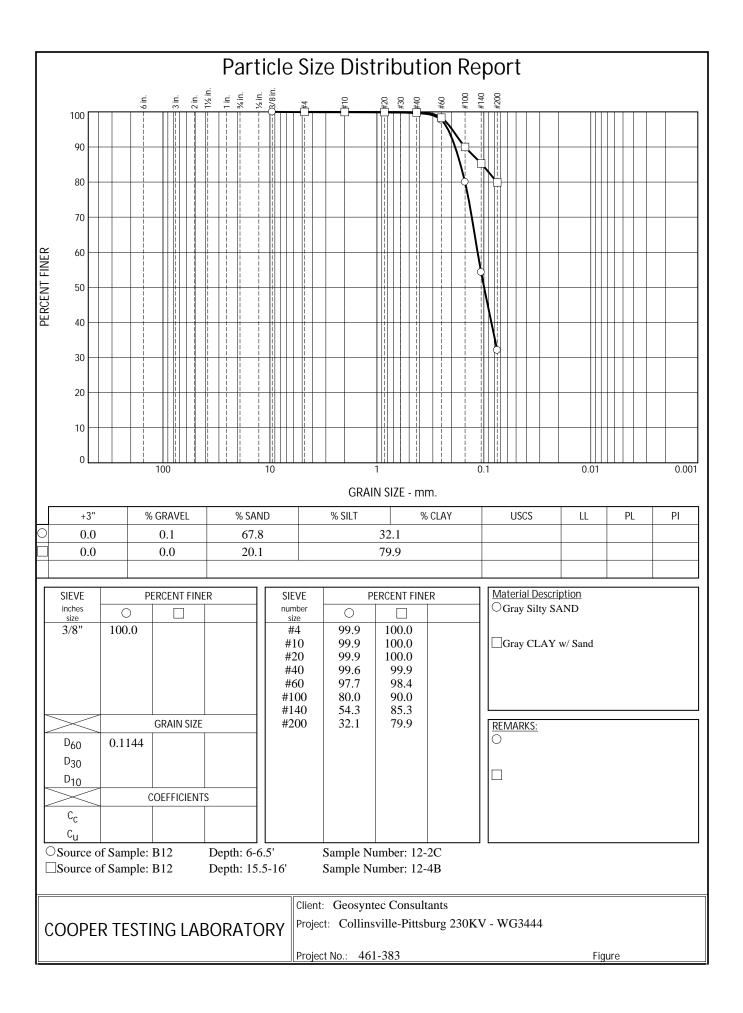


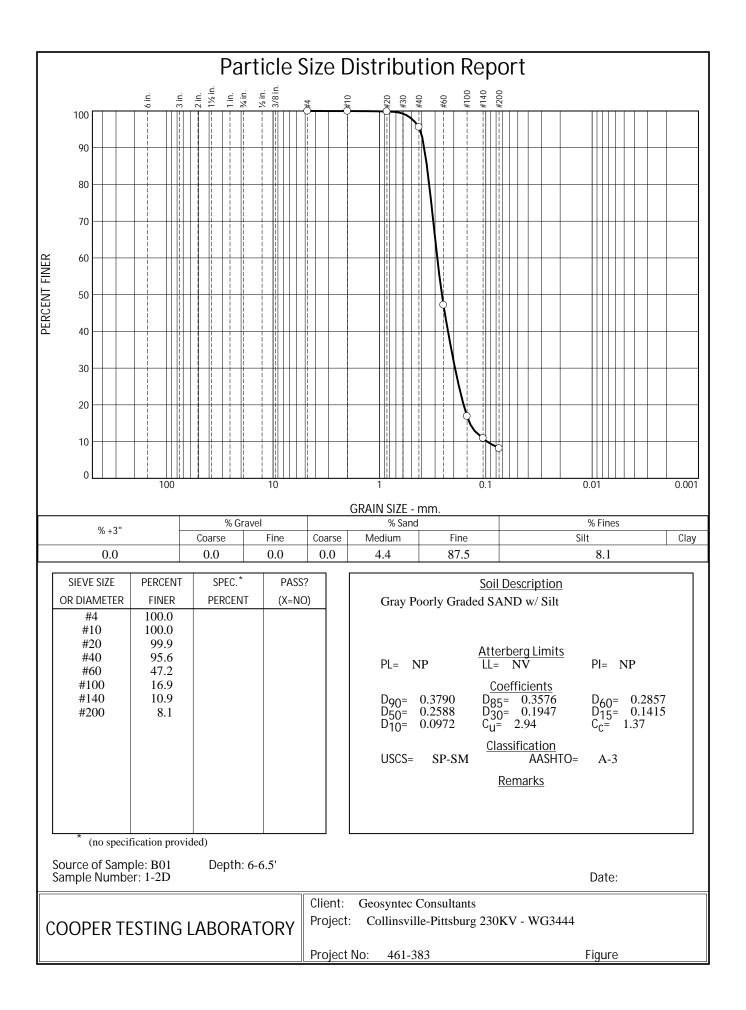


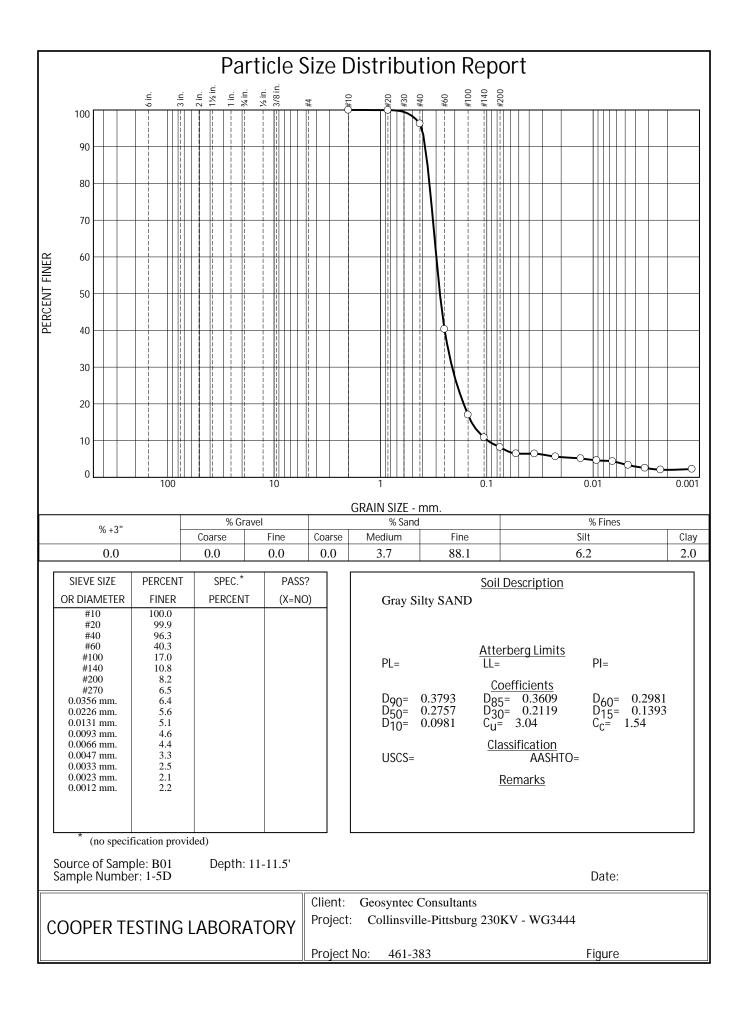


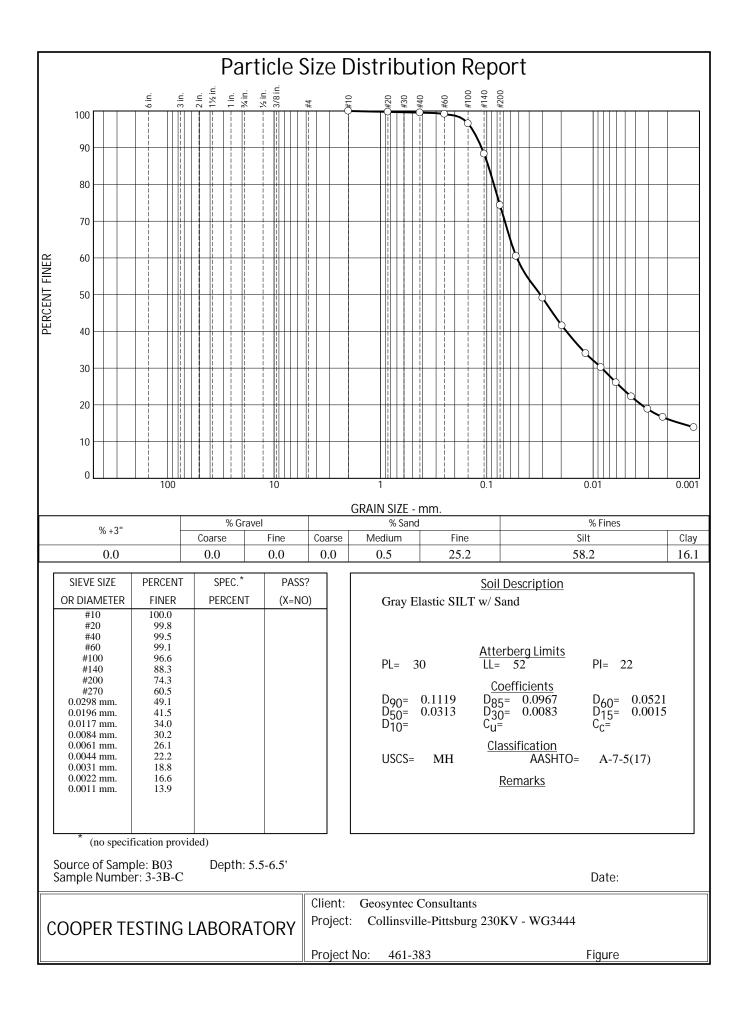


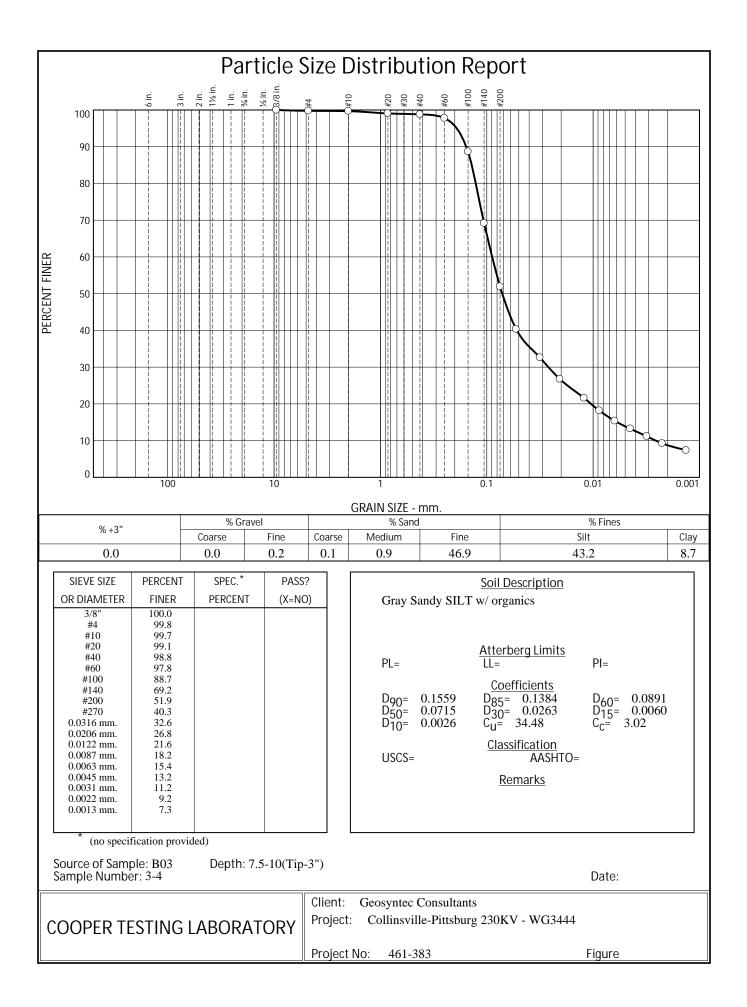


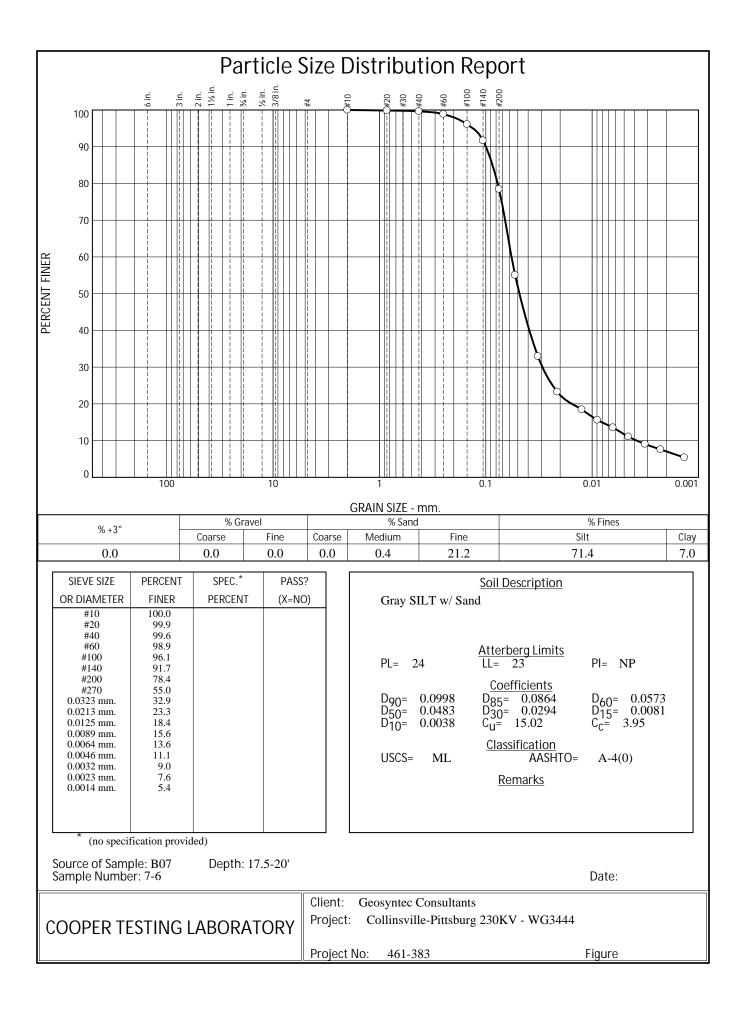


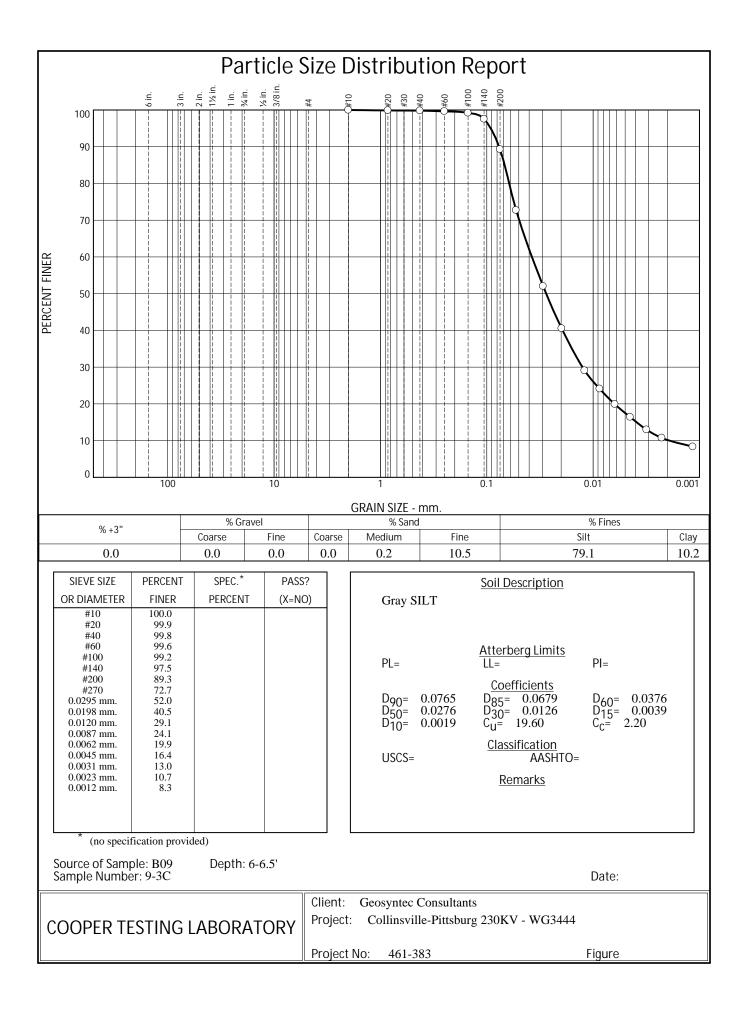


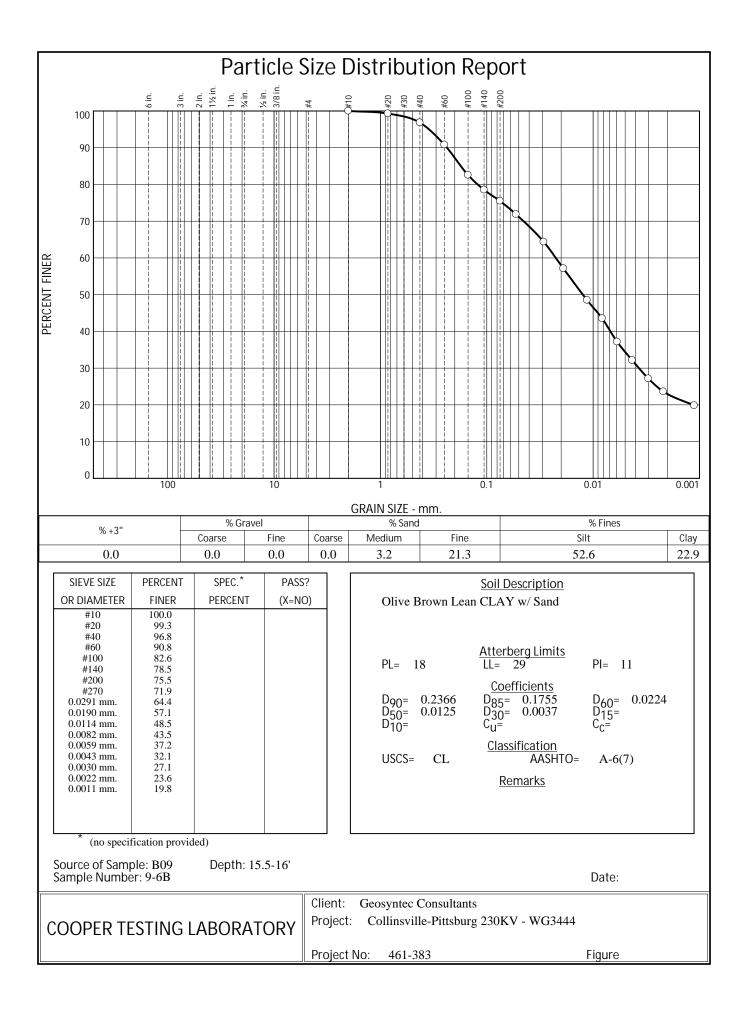


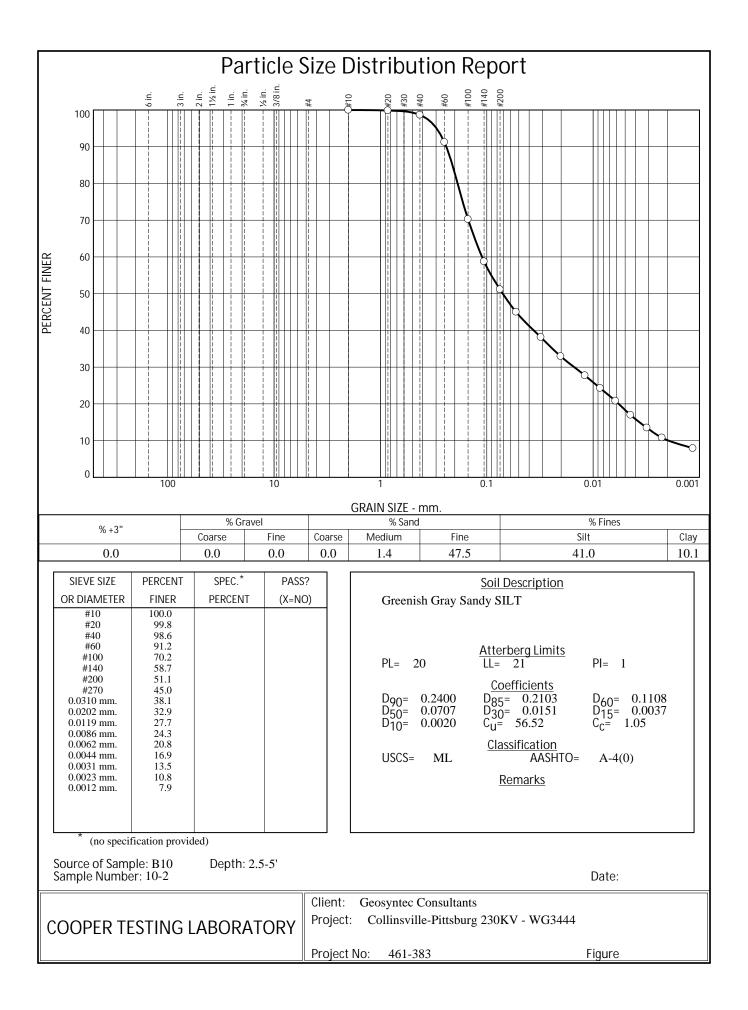


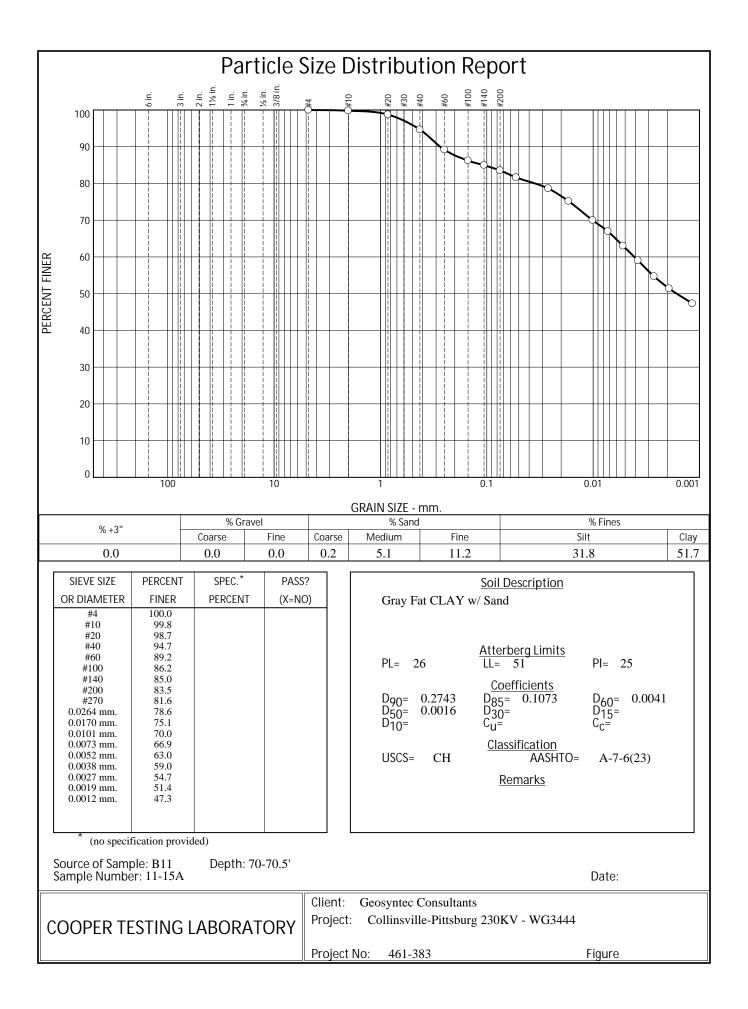


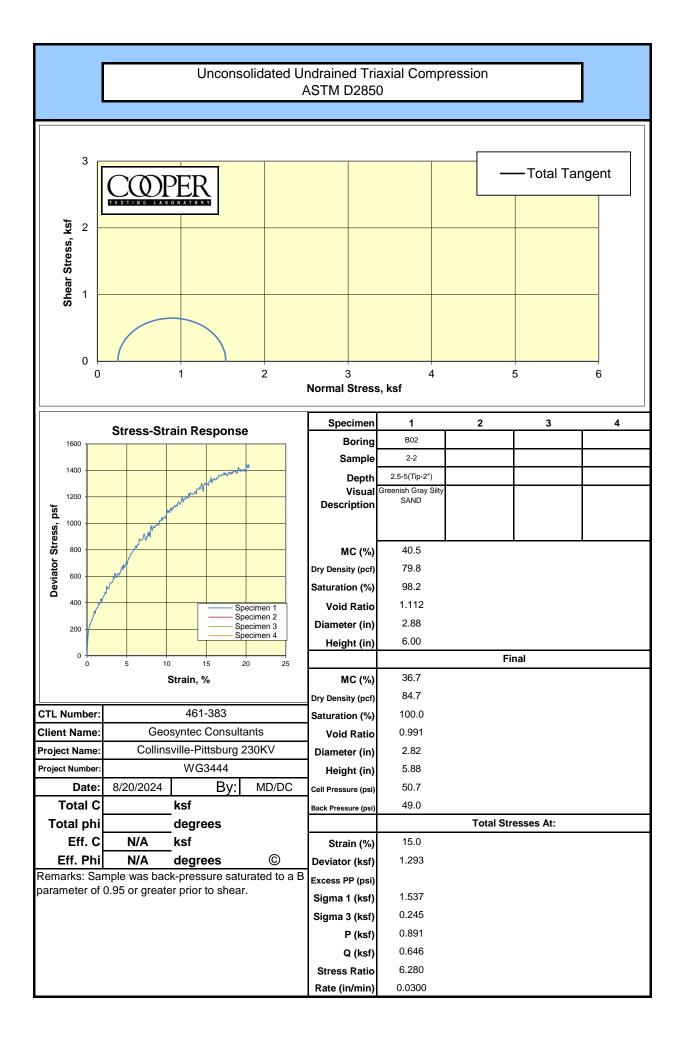


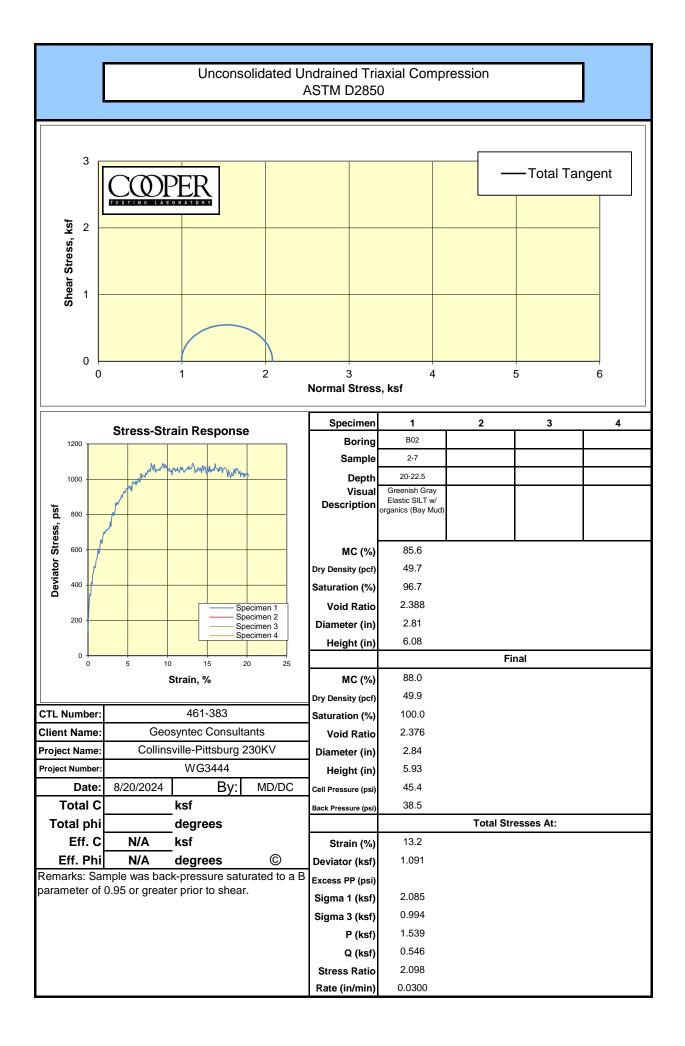


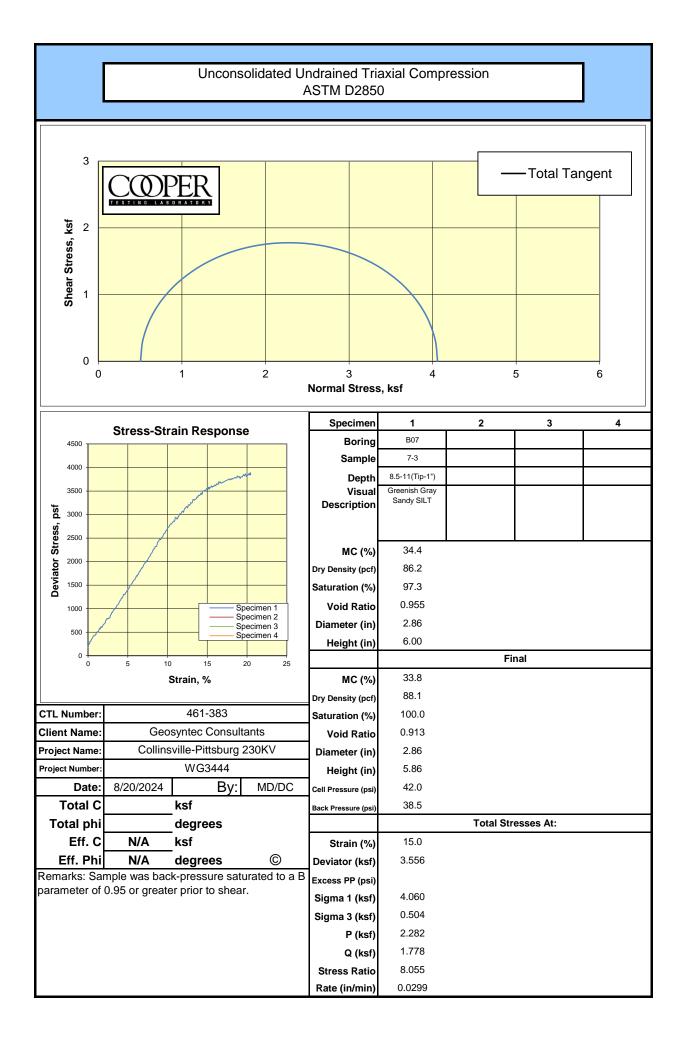


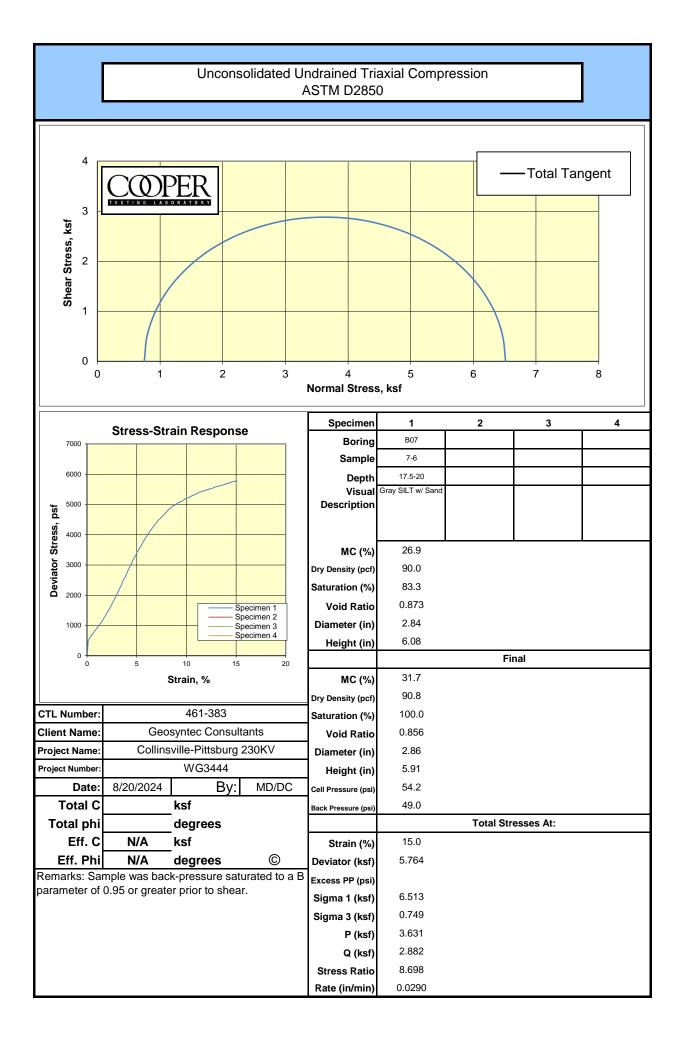


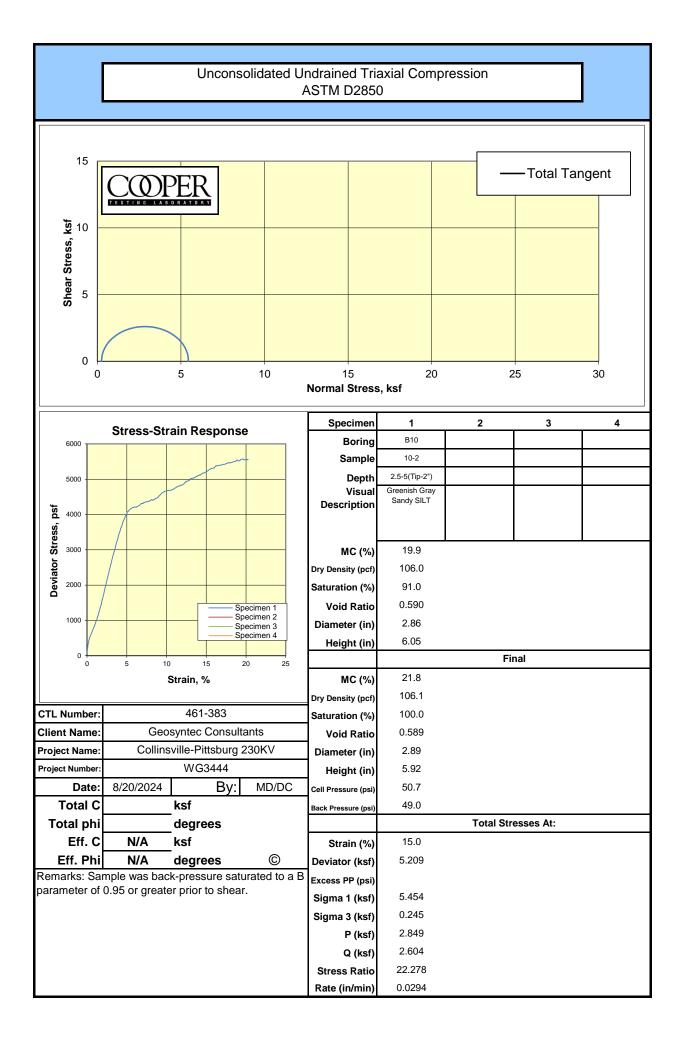


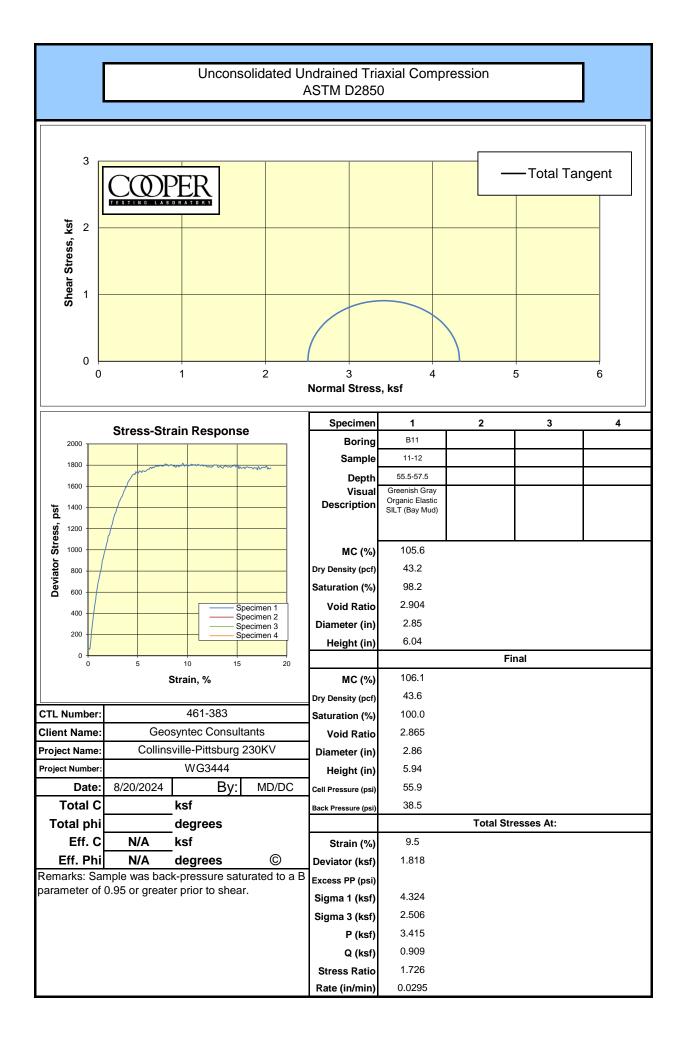


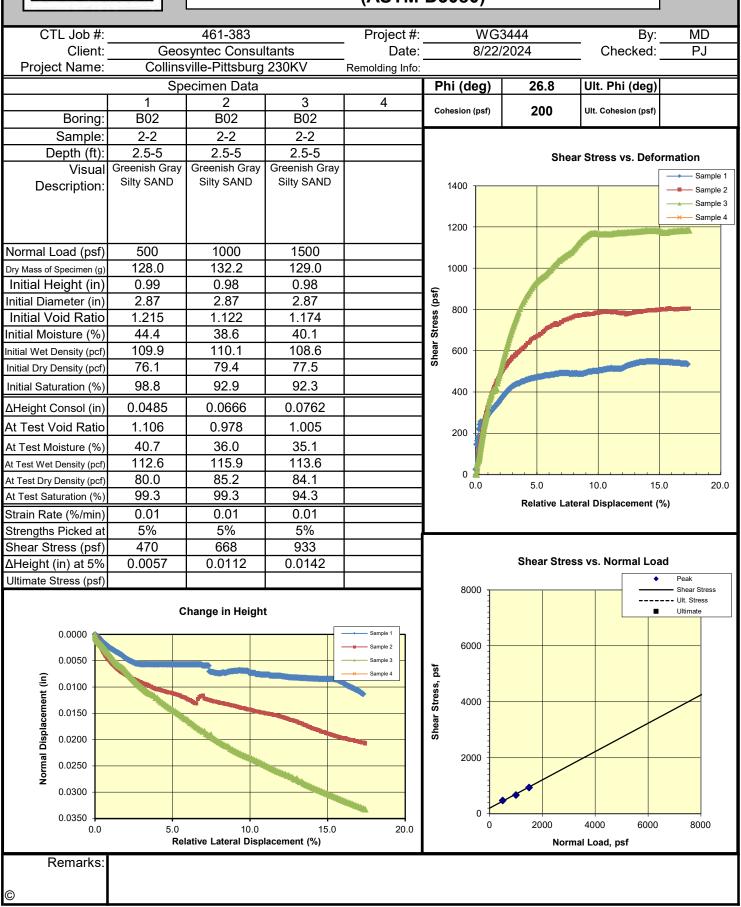




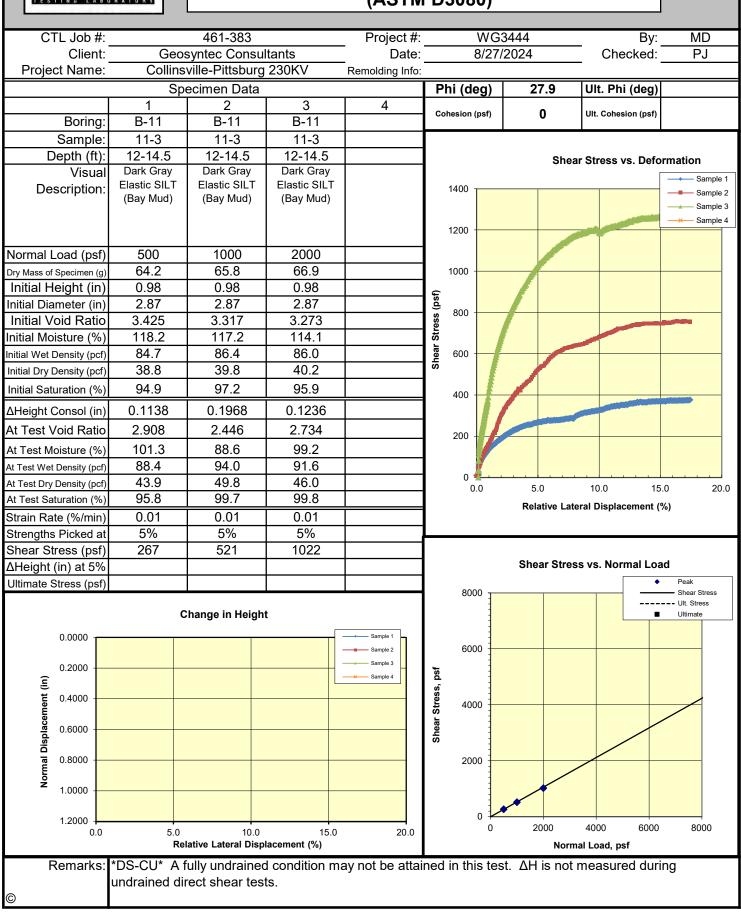



			#200 Sie\ A	ve Was STM D 1		vsis		
Job No.:	461-383		Pr	oject No.:	WG3444		Run By:	MD
	Geosyntec Co			Date:	9/4/2024		Checked By:	DC
Project:	Collinsville-Pit	tsburg 230KV	1					
Boring:	B03	B03	T					
Sample:	3-2	3-7						
Depth, ft.:	5-6.5	20-21.5						
Soil Type:	Gray Elastic SILT w/ Sand	Black CLAY						
Wt of Dish & Dry Soil, gm	389.5	405.4						
Weight of Dish, gm	174.1	174.0						
Weight of Dry Soil, gm	215.4	231.4						
Wt. Ret. on #4 Sieve, gm Wt. Ret. on #200 Sieve, gm	0.0	1.1					<u> </u>	
% Gravel	59.0	<u>33.1</u> 0.5					<u>}</u>	
% Sand	0.0 27.4	<u> </u>					+	
% Silt & Clay	72.6	85.7					1	
Remarks: As an added bene included is dependent upor The gravel is always inclu	efit to our c both the tea	chnician's ti	ime available a	nd if ther	e is a signi:	ficant enoug	h amount of gr	cavel.

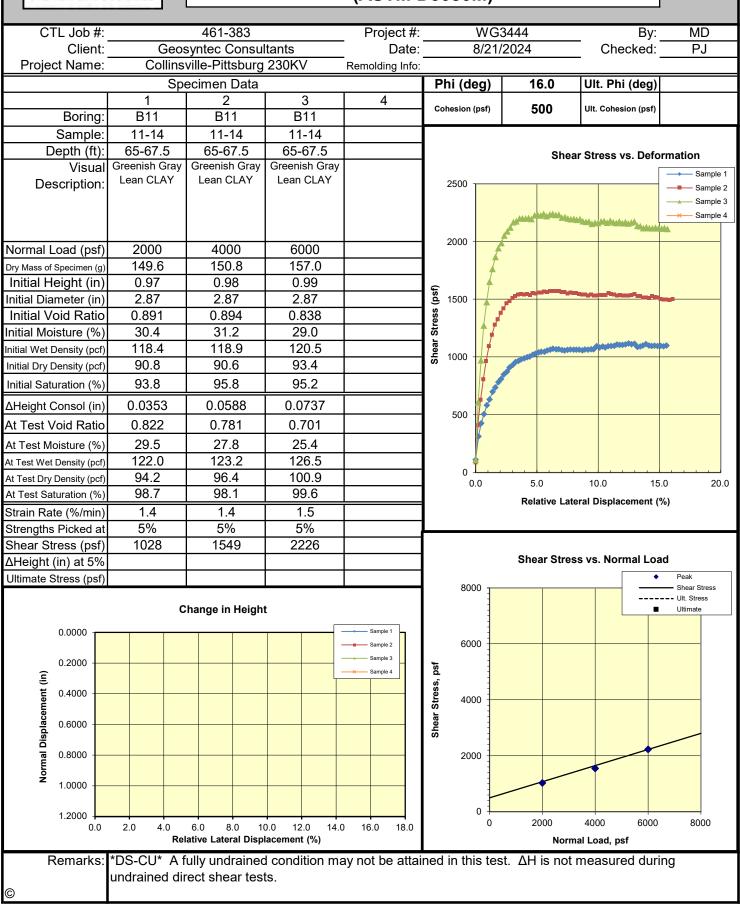




TESTING LAB	ORATORY				130	001	<u>(I)</u>				
CTL Job #:		461-383		Project #:			WG34			Зу:	MD
Client:		syntec Consu		Date:		8	8/20/20)24	Checke	ed:	PJ
Project Name:	Collins	ville-Pittsburg	230KV	Remolding Info:							
	Sp	ecimen Data			Pł	ni (de	g)	13.4	Ult. Phi (de	eg)	
	1	2	3	4	Cot	nesion (p	nef)	400	Ult. Cohesion (nef)	
Boring:	B02	B02	B02		001	1631011 ()	531)	400	UIL CONESION (p31)	
Sample:	2-7	2-7	2-7								
Depth (ft):	20-22.5	20-22.5	20-22.5					She	ear Stress vs. D	Deform	ation
Visual	Greenish Gray	Greenish Gray	Greenish Gray								Sample 1
Description:	Elastic SILT w/	Elastic SILT w/	Elastic SILT w/			1400 T				-	Sample 2
	organics (Bay Mud)	organics (Bay Mud)	organics (Bay Mud)							-	→ Sample 3
	(Widd)	(Mdd)	(Mdd)			1200 -					× Sample
						1200		A COLORED TO A COLORED			
lormal Load (psf)	800	1600	3200				- f				
ry Mass of Specimen (g)	87.1	91.9	89.1			1000 +					
Initial Height (in)	0.98	0.99	0.97		Ê		I				
nitial Diameter (in)	2.87	2.87	2.87		Shear Stress (psf)	800 -					
Initial Void Ratio	2.215	2.069	2.126		ess	000	4				
nitial Moisture (%)	77.0	71.2	73.5		ŝ					~	
nitial Wet Density (pcf)	92.8	94.0	93.6		ıear	600 -					
nitial Dry Density (pcf)	52.4	54.9	53.9		S		↑ <i>↓</i>				
nitial Saturation (%)	93.8	93.0	93.4			400 -	I				
Height Consol (in)	0.0250	0.0481	0.1183			400 1					
At Test Void Ratio	2.133	1.919	1.746								
						200 -					
At Test Moisture (%)	76.9	69.4	64.7			1					
at Test Wet Density (pcf)		97.8	101.1			₀ [
At Test Dry Density (pcf)		57.7	61.4			0.	0	5.0	10.0	15.0	20.0
At Test Saturation (%)	97.3	97.6	100.0					Relative La	teral Displaceme	ent (%)	
Strain Rate (%/min)	1.4	1.4	1.4								
Strengths Picked at		5%	5%								
Shear Stress (psf)	554	718	1173					Shoar Stre	ess vs. Normal	heol	
Alleight (in) at 5%								Shear She		LUau	Peak
Jltimate Stress (psf)						8000)			•	Shear Stress
	c	hange in Heigh	•						- -		 Ult. Stress Ultimate
	, i i i i i i i i i i i i i i i i i i i	inange in neigh	•				-				
0.0000			-	Sample 1		6000					
0.0000				Sample 2		0000					
0.2000 E			-	Sample 4	psf		-				
Normal Displacement (ii)					Shear Stress, psf						
					Str	4000) <u> </u>				
<u>8</u> 0.6000					lear						
Disp					ŝ		-				
- 0008.0 g						2000	о ј				
L											
z 1.0000] .		-		
						,	,				
1.2000 +	2.0 4.0	6.0 8.0 1	0.0 12.0 14.0	16.0 18.0		(0	2000	4000 6	000	8000
0.0		lative Lateral Disp		, 10.0 10.0					mal Load, psf		
Remarks:		-		ay not be attai	ned	in thi	e toot			Jurine	1
nemarks.		rect shear tes		ay not be attail	neu		5 ເປຣເ.	ы i i5 i i0		Juint	J
N			lə.								



TESTING LAB	DRATORY				D2000	<u>ין</u>			
CTL Job #:		461-383		Project #:		WG34		By:	MD
Client:		syntec Consul		Date:		8/22/2	2024	Checked:	PJ
Project Name:		svillePittsburg	230KV	Remolding Info:	-				
		ecimen Data			Phi (de	eg)	32.8	Ult. Phi (deg)	
	1	2	3	4	Cohesion	(psf)	150	Ult. Cohesion (psf)	
Boring:	B07	B07	B07			()	100		
Sample:	7-3	7-3	7-3						
Depth (ft):	8.5-11	8.5-11	8.5-11				Sh	ear Stress vs. Defor	mation
Visual	Greenish Gray Sandy SILT	Greenish Gray Sandy SILT	Greenish Gray Sandy SILT						Sample 1
Description:			Sandy SIET		1600				
									Sample 3
					1400				Sample 4
Normal Lood (pof)	500	1000	1500						
Normal Load (psf)		139.6	137.1		1200				
Dry Mass of Specimen (g) Initial Height (in)	0.97	0.99	0.99						
Initial Diameter (in)	2.87	2.87	2.87		ໂຣ 1000				
Initial Void Ratio	1.090	1.031	1.072) ss				
Initial Moisture (%)	39.6	37.4	39.1		Shear Stress (psf)		A		
Initial Wet Density (pcf)	112.6	114.1	113.2		lear	E.			
Initial Dry Density (pcf)		83.0	81.4		ទ ₆₀₀				
Initial Saturation (%)	98.0	98.1	98.6						
ΔHeight Consol (in)		0.0173	0.0257		400				
At Test Void Ratio	1.065	0.995	1.018			Â.			
					200	J			
At Test Moisture (%)	38.8 113.3	36.7 115.5	37.6 114.9						
At Test Wet Density (pcf) At Test Dry Density (pcf)		84.5	83.5		0	<u>.</u>			
At Test Saturation (%)		99.6	99.7		0	.0	5.0	10.0 15.0	
Strain Rate (%/min)	0.01	0.01	0.01				Relative L	ateral Displacement (%)
Strengths Picked at		5%	5%						
Shear Stress (psf)	451	842	1097						
∆Height (in) at 5%	-0.0054	-0.0020	0.0083				Shear Str	ess vs. Normal Load	I
Ultimate Stress (psf)								•	Peak
					800	⁰⁰			 Shear Stress Ult. Stress
	C	change in Height	t			1			Ultimate
-0.0100				Sample 1		1			
-0.0050				Sample 2	600	00			
<u> </u>			-	× Sample 4	psf	1			
					'sss				
0.0100					5 400	00			
<u>8</u> 0.0150					Shear Stress, psf				
š 0.0200					ş				
(u) 0.0000 0.0100 0.0100 0.0250 0.0250 0.0300					200	00	/		
N 0.0300						1			
0.0350									
0.0330						0			
0.0400	5.0	10.0	15.0	20.0		0	2000	4000 6000	8000
	Re	lative Lateral Disp	lacement (%)				No	mal Load, psf	
Remarks:									
0									



TESTING LAB	ORATORY			(ASTM	D3080	<u>))</u>				
CTL Job #		461-383		Droiget #		MC2	444		Dv.	MD
CTL Job #: Client:		syntec Consu	Itanta	Project #: Date:		WG3 8/26/2		Chec	By:	MD PJ
Project Name:		sville-Pittsburg		Remolding Info:		0/20/2	2024			ГJ
Floject Name.		Ť	23011	Remoluling into.	Dhi (da	<u></u>	41.2	Ult. Phi	(dog)	
	 1	ecimen Data	3	4	Phi (de)	41.Z	Oit. Phi	(deg)	
Boring:	B10	B10	B10		Cohesion ((psf)	200	Ult. Cohesic	on (psf)	
Sample:		10-2	10-2							
Depth (ft):	2.5-5	2.5-5	2.5-5					_		
Visual			Greenish Gray				Sł	near Stress vs	. Deform	nation
Description:	Sandy SILT	Sandy SILT	Sandy SILT		1800 -					Sample
Description.		-	-		1000					Sample :
					1600 -				_	
lormal Load (psf)	500	1000	1500		1400 -		\square			
ry Mass of Specimen (g)		161.9	158.7							
nitial Height (in)		0.97	0.99		1200 -	-				
nitial Diameter (in)	2.87	2.87	2.87		(psf					
nitial Void Ratio		0.715	0.786		ss 1000 -					
itial Moisture (%)		24.3	25.5		- 000 - 000					
itial Wet Density (pcf)	122.1	122.1	118.5		- 008 je					
nitial Dry Density (pcf)	97.8	98.3	94.4			1 🛔 –				
nitial Saturation (%)	92.9	91.6	87.7		600 -	1				
Height Consol (in)	0.0080	0.0191	0.0224		400 -	ł /				
t Test Void Ratio		0.681	0.745		400 -	1				
					200 -					
t Test Moisture (%)		25.1 125.5	27.3 122.9							
t Test Wet Density (pcf) t Test Dry Density (pcf)		125.5	96.6		0	<u> </u>				
t Test Saturation (%)		99.6	98.9		0	.0	5.0	10.0	15.0	20.
train Rate (%/min)		0.01	0.01				Relative I	Lateral Displace	ment (%)	
trengths Picked at		5%	5%							
hear Stress (psf)		1107	1615							
Height (in) at 5%		-0.0048	0.0020				Shear St	ress vs. Norm	al Load	
lltimate Stress (psf)									٠	Peak
					800	⁰⁰]				 Shear Stress Ult. Stress
	(Change in Heigh	t			1				Ultimate
-0.0300				Sample 1		-				
			-	Sample 2	600	00				
-0.0200				Sample 3	osf	1				
Normal Displacement (ir) 00000.0 Displacement (ir) 00000.0 00000					Shear Stress, psf	1				
-0.0100					400 g	00				
					ear	1				
					чs	1				
별 0.0100					200	00				
orm							•			
Z 0.0200										
						。				
						0	2000	4000	6000	8000
0.0300	5.0	10.0	15.0	20.0						
		10.0 Iative Lateral Disp	15.0 lacement (%)	20.0			No	ormal Load, psf		
0.0	Re	elative Lateral Disp	lacement (%)		n is repor	ted.				he repor
0.0	Re Due to the h		lacement (%) ohi angle, no p	hi or cohesior			To add ph	ni and cohes	sion to t	

APPENDIX C Photo Log

Photo No.:	1	Date:	July 22, 2024
Photographer:	David Umberg		
Subject:	View of Gregg's R/V Quin Drill Ship set up with spu	ds at Boring #9	(looking west)
Project:	Collinsville-Pittsburg 230 kV Offshore	City/State:	Sacramento River, CA

Photo No.:	2	Date:	July 22, 2024
Photographer:	Jim Xia Dea		
Subject:	Installation of 7-in. diameter outer conductor casing t mudline	hrough water an	d within upper ~5' below
Project:	Collinsville-Pittsburg 230 kV Offshore	City/State:	Sacramento River, CA

Photo No.:	3	Date:	July 22, 2024			
Photographer:	David Umberg					
Subject:	Installation of 5-in. diameter drill bit and NWJ rods t	hrough conducto	or casing at Mobile B80 drill			
-	rig					
Project:	Collinsville-Pittsburg 230 kV Offshore	City/State:	Sacramento River, CA			

Photo No.:	4	Date:	August 01, 2024
Photographer:	Jim Xia Dea		
Subject:	View of the Mobile B80 rotary drilling rig from the b	oridge of the R/V	' Quin.
Project:	Collinsville-Pittsburg 230 kV Offshore	City/State:	Sacramento River, CA

Photo No.:	5	Date:	July 22, 2024				
Photographer:	Jim Xia Dea						
Subject:	View of soil taken from Sample 9-1. Sampled with Mod Cal Sampler. Soil Unit 2: Sandy Silt to						
-	Silty Sand	_	-				
Project:	Collinsville-Pittsburg 230 kV Offshore	City/State:	Sacramento River, CA				

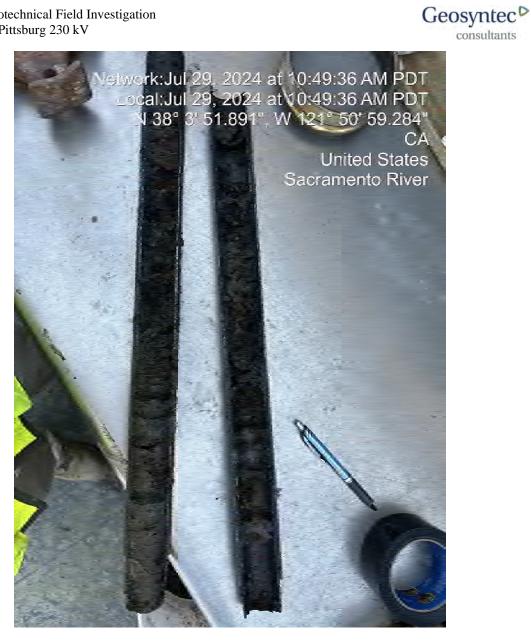


Photo No.:	6	Date:	July 31, 2024
Photographer:	Jim Xia Dea		
Subject:	View of Sample 1-3. Sampled with SPT sampler. So	il Unit 1: Poorly	Graded Sand with Silt.
Project:	Collinsville-Pittsburg 230 kV Offshore	City/State:	Sacramento River, CA

Photo No.:	7	Date:	July 29, 2024
Photographer:	Jim Xia Dea		
Subject:	View of Sample 2-7. Sampled with Shelby Tube. Soi	l Unit 3: Elastic	Silt with sand and organics
Project:	Collinsville-Pittsburg 230 kV Offshore	City/State:	Sacramento River, CA

Photo No.:	8	Date:	July 29, 2024
Photographer:	Jim Xia Dea		
Subject:	View of Sample 3-7. Sampled with SPT Sampler. So	il Unit 3: Fat Cla	ay with Sand and Organics.
Project:	Collinsville-Pittsburg 230 kV Offshore	City/State:	Sacramento River, CA

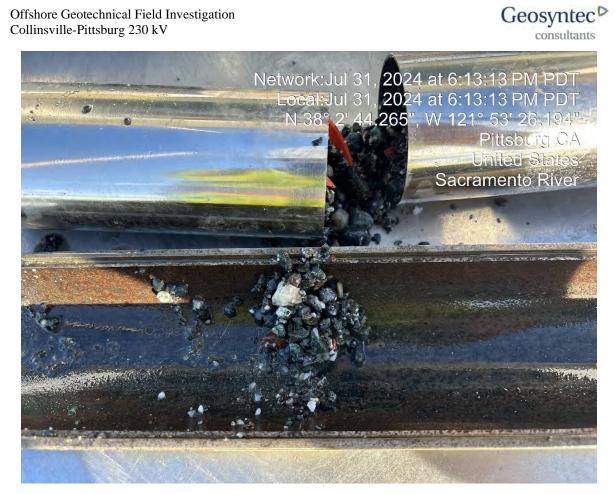


Photo No.:	9	Date:	July 30, 2024
Photographer:	Jim Xia Dea		
Subject:	View of Sample 11-19. Sampled with SPT Sampler. Soil Unit 4: Lean Clay.		
Project:	Collinsville-Pittsburg 230 kV Offshore	City/State:	Sacramento River, CA

Photo No.:	10	Date:	July 24, 2024
Photographer:	Jim Xia Dea		
Subject:	View of Sample 7-3. Sampled with Shelby Tube. Soil Unit 2: Sandy Silt.		
Project:	Collinsville-Pittsburg 230 kV Offshore	City/State:	Sacramento River, CA

Photo No.:	11	Date:	July 24, 2024
Photographer:	Jim Xia Dea		
Subject:	View of Sample 8-4. Sampled with Mod Cal Sampler. Soil Unit 5: Poorly Graded Gravel with		
-	Sand.		
Project:	Collinsville-Pittsburg 230 kV Offshore	City/State:	Sacramento River, CA